首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
非晶态中空ZnSnO3 立方体的制备及其电化学性能
作者:王艳坤1 2 张建民1 
单位:1. 郑州大学化学与分子工程学院 河南 郑州 450001 2. 河南教育学院化学与环境学院 河南 郑州 450006 
关键词:偏锡酸锌 中空结构 碱蚀刻 负极材料 锂离子电池 
分类号:TM912.9
出版年,卷(期):页码:2016,44(10):0-0
DOI:10.14062/j.issn.0454-5648.2016.10.06
摘要:
采用碱蚀刻–热解法制备了无定形中空ZnSnO3 立方体,并利用X 射线衍射、扫描电镜、透射电镜、热重分析、N2吸附–脱附曲线、循环伏安和恒流充放电技术对样品的结构、形貌及电化学性能进行表征。结果表明,所制备的ZnSnO3 呈边长约为1 μm 的无定型中空立方体。作为锂电负极材料,在100 mA/g 电流密度下,首次放电容量高达1 591 mA·h/g,50 次循环后放电容量保持在305 mA·h/g。无定形中空ZnSnO3 立方体良好的电化学性能可归因于无定形态及其中空结构有效缓冲了锂离子嵌入–脱嵌过程引起的体积变化。
Amorphous ZnSnO3 hollow cubes were synthesized via a facile alkali etching and subsequent pyrolysis method. The structure, morphology and electrochemical properties were characterized by X–ray diffraction, scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis, N2 adsorption–desorption curves, cyclic voltametry and galvanostatic charge–discharge measurements. The results indicated that the as–synthesized ZnSnO3 show an amorphous structure, the average edge size of the hollow cube was about 1 μm. As anode material for lithium–ion batteries, ZnSnO3 hollow cubes exhibited a high initial specific discharge capacity of 1 591 mA·h/g and retained 305 mA·h/g after 50 cycles, at current density of 100 mA/g. These good electrochemical performances could be attributed to the amorphous property and hollow structure that accommodate the volume change during the Li+ insertion–extraction process.
基金项目:
国家自然科学基金项目(21373189);河南省重点科技攻关项目(142102210421)。
作者简介:
王艳坤(1973—),男,博士。
参考文献:
[1] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano–sized transition–metal oxides as negative–electrode materials for lithium–ion batteries [J]. Nature, 2000, 407(6803): 496–499. [2] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. J Power Sources, 2010, 195(9): 2419–2430. [3] WANG Y, LI H, HE P, et al. Nano active materials for lithium–ion batteries[J]. Nanoscale, 2010, 2(8): 1294–1305. [4] 庞春会, 吴川, 吴锋, 等. 锂离子电池纳米正极材料合成方法研究进展[J]. 硅酸盐学报, 2012, 40(2): 247–255. PANG Chunhui, WU Chuan, WU Feng, et al. J Chin Ceram Soc, 2012, 40(2): 247–255. [5] LIAN P, WANG J, CAI D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium–ion batteries[J]. Electrochim Acta, 2014, 116(2):103–110. [6] CHEN L, WANG Z, HE C, et al. Porous graphitic carbon nanosheets as a high–rate anode material for lithium–ion batteries[J]. ACS Appl Mater Interfaces, 2013, 5(19): 9537–9545. [7] HAN F, LI W C, LEI C, et al. Selective formation of carbon–coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high–capacity lithium–ion battery[J]. Small, 2014, 10(13):2637–2644. [8] QIN Y L, ZHANG F F, DU X C, et al. Controllable synthesis of cube–like ZnSnO3@TiO2 nanostructures as lithium ion battery anodes [J]. J Mater Chem A, 2015, 3(6): 2985–2990. [9] MOHAMEDI M, LEE S J, TAKAHASHI D, et al. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries[J]. Electrochim Acta, 2001, 46(8):1161–1168. [10] XIE Q, MA Y, ZHANG X, et al. ZnO/Ni/C composite hollow microspheres as anode materials for lithium ion batteries [J]. J Alloys Compd, 2015, 619: 235–239. [11] LIU C, CHEN H, REN Z, et al. Controlled synthesis and structure tunability of photocatalytically active mesoporous metal–based stannate nanostructures [J]. Appl Surf Sci, 2014, 296: 53–60. [12] XIE Q, MA Y, ZHANG X, et al. Synthesis of amorphous ZnSnO3–C hollow microcubes as advanced anode materials for lithium ion batteries [J]. Electrochim Acta, 2014, 141: 374–383. [13] WANG Y, DING J, LIU Y, et al. SnO2@reduced graphene oxide composite for high performance lithium–ion battery[J]. Ceram Int, 2015, 41(10): 15145–15152. [14] CHEN Y, QU B, MEI L, et al. Synthesis of ZnSnO3 mesocrystals from regular cube–like to sheet–like structures and their comparative electrochemical properties in Li–ion batteries [J]. J Mater Chem, 2012, 22(48): 25373–25379. [15] WANG Y, LI D, LIU Y, et al. Fabrication of novel rugby–like ZnSnO3/reduced graphene oxide composites as a high–performance anode material for lithium–ion batteries [J]. Mater Lett, 2016, 167:222–225. [16] SONG W, XIE J, HU W, et al. Facile synthesis of layered Zn2SnO4/graphene nanohybrid by a one–pot route and its application as high–performance anode for Li–ion batteries [J]. J Power Sources, 2013, 229(9): 6–11. [17] WANG Y, LI D, LIU Y, et al. Self–assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium–ion batteries[J]. Electrochim Acta, 2016, 203:84–90. [18] LOU X W, WANG Y, YUAN C, et al. Template–free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Adv Mater, 2006, 18(17): 2325–+. [19] GUO W. Hollow and porous ZnSnO3 gas sensor for ethanol gas detection[J]. J Electrochem Soc, 2016, 163(5): B131–B139.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com