首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
钢纤维-水泥基界面过渡区纳米力学性能
作者:徐礼华 余红芸 池寅 邓方茜 胡杰 
单位:武汉大学土木建筑工程学院 武汉 430072 
关键词:纳米力学性能 扫描电子显微镜 界面过渡区 微观结构 
分类号:TU525.9
出版年,卷(期):页码:2016,44(8):1134-1136
DOI:10.14062/j.issn.0454-5648.2016.08.09
摘要:

研究不同水灰比条件下的钢纤维增强水泥基复合材料界面过渡区(ITZ)的纳米力学性能。通过纳米压痕试验,测试界面过渡区及其附近区域的荷载–压痕深度曲线,运用Oliver-Pharr方法研究了弹性模量和硬度分布规律并绘制相应的微结构表征云图,结合扫描电子显微镜分析ITZ形成机制。此外,利用反褶积法对ITZ的弹性模量及压痕硬度的频率分布曲线进行多峰拟合,得到了各相的频率分布。结果表明:不同水灰比样品界面过渡区的厚度均为40 μm左右;在界面过渡区内,弹性模量和压痕硬度的最弱点在距纤维表面20 μm附近,且水灰比越大,弹性模量与压痕硬度值越小;随着水灰比的增大,界面过渡区孔洞和低密度水化硅酸钙含量逐渐增高,高密度水化硅酸钙含量逐渐降低。

The nanoscale mechanical properties of interfacial transition zone (ITZ) in steel fiber reinforced cementitious composite for different water-cement ratios were investigated. The load-crack depth (P-h) curves of ITZ were determined via nanoindentation test. The distribution of elastic modulus and hardness were calculated and mapped in a 2D plane by the Oliver-Pharr method. The formation mechanism of ITZ was analyzed. In addition, the frequency distribution of different phases in ITZ was determined by a multi-peak fitting deconvolution method. The results indicate that there is a interface width about 40 μm in all the cases. The minimum modulus and hardness occur at a distance of 20 μm from the steel fiber surface. The greater the water-cement ratio, the lower elastic modulus and hardness will be. The content of porosity and low density C-S-H gradually increase, and the density of C-S-H decreases with the increase of water-cement ratio.
 

基金项目:
基金项目:国家自然科学基金(51478367)资助。
作者简介:
徐礼华(1962―),女,博士,教授。
参考文献:

[1] 沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料[M]. 建材工业, 2004: 185.

[2] SORELLI L, Constantinides G, Ulm F J, et al. The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques[J]. Cem Concr Res, 2008, 38(12): 14471456.

[3] WANG X H. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar[J]. Cem Concr Res, 2009, 39(8): 701715.

[4] Wang X H, Jacobsen S, Lee S F, et al. Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar[J]. Mater Struct, 2010, 43(1/2): 125139.

[5] ZADEH V Z, BOBKO C P. Nano-mechanical properties of internally cured kenaf fiber reinforced concrete using nanoindentation[J]. Cem Concr Compos, 2014, 52(8): 917.

[6] 胡杰, 徐礼华. 聚丙烯纤维增强水泥基复合材料界面过渡区的纳米力学性能[J]. 硅酸盐学报, 2016, 44(2): 268278.
HU Jie, XU Lihua. J Chin Ceram Soc, 2016, 44(2): 268278.

[7] MONDAL P, SHAH S P, MARKS L. A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials[J]. Cem Concr Res, 2007, 37(10): 14401444.

[8] KIM J Y, LEE J J, LEE Y H, et al. Surface roughness effect in instrumented indentation: A simple contact depth model and its verification[J]. J Mater Res, 2006, 21(12): 2975–2978.

[9] MILLER M, BOBKO C, Vandamme M, et al. Surface Roughness Criteria for Cement Paste Nanoindentation[J]. Cem Concr Res, 2008, 38(4): 467–476.

[10] NEMECEK J. Creep effects in nanoindentation of hydrated phases of cement pastes[J]. Mater Charact, 2009, 60(9): 10281034.

[11] 赵素晶, 孙伟. 纳米压痕在水泥基材料中的应用与研究进展[J]. 硅酸盐学报, 2011, 39(1): 164176.
ZHAO Sujing, SUN Wei. J Chin Ceram Soc, 2011, 39(1): 164176.

[12] 陈惠苏, 孙伟, Stroeven Piet. 水泥基复合材料集料与浆体界面研究综述(): 界面微观结构的形成、劣化机理及其影响因素[J]. 硅酸盐学报, 2004, 32(1): 7079.
CHEN Huisu, SUN Wei, Stroeven Piet. J Chin Ceram Soc, 2004, 32(1): 7079.

[13] SUN W, MANDEL J A, Said A S. Study of the interface strength in steel fiber-reinforced cement-based composites[J]. J Am Concr Institute, 1986, 83(4): 597605.

[14] 孙伟, 高建明, 秦鸿根. 钢纤维混凝土界面粘结强度的研究[J]. 硅酸盐学报, 1985, 13(3): 292300.
SUN Wei, GAO Jianming, QIN Honggen. J Chin Ceram Soc, 1985, 13(3): 292300.

[15] 童良, 陈恩义. 建筑材料物相研究基础[M]. 清华大学出版社, 1996: 133139.

[16] Gao Y, De Schutter G, Ye G., et al. Characterization of ITZ in ternary blended cementitious composites: experiment and simulation[J]. Construct Build Mater, 2013, 41: 742750.

[17] Wu K, Shi H, Xu L, et al. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties[J]. Cem Concr Res, 2016, 79: 243256.

[18] 陈惠苏, 孙伟, 赵庆新, . 纤维曲率对界面过渡区初始微观结构影响的计算机模拟[J]. 硅酸盐学报, 2005, 33(4): 484491.
CHEN Huisu, SUN Wei, ZHAO Qingxin, et al. J Chin Ceram Soc, 2005, 33(4): 484491.

[19] Xu W X. Che of particulate composites by quantitative stereology and random sequential packing model of mono-/polydispersed convex polyhedral particles[J]. Ind Eng Chem Res, 2013, 52(20): 66786693.

[20] Xu W X, Lv Z, Chen H S. Effects of particle size distribution, shape and volume fraction of aggregates on the wall effect of concrete via random sequential packing of polydispersed ellipsoidal particles[J]. Physica A: Statis Mecha Applicat, 2013, 392(3): 416426.

[21] Chen H S, Zhu Z G, Liu L, et al. Aggregate shape effect on the overestimation of ITZ thickness: Quantitative analysis of Platonic particles[J]. Powder Technol, 2016, 289: 117.

[22] Chen H S, Sun W, Stroeven P, et al. Overestimation of the interface thickness around convex-shaped grain by sectional analysis[J]. Acta Mater, 2007, 55(11): 39433949.

[23] Xiao J, Li W, Sun Z, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation[J]. Cem Concr Compos 2013, 37(3): 276292.

[24] LI W, XIAO J, SUN Z, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches[J]. Construct Build Mater, 2012, 35: 10451055.

[25] Liu R G, Han F H, Yan P Y. Characteristics of two types of C-S-H gel in hardened complex binder pastes blended with slag[J]. Sci China Technol Sci, 2013, 56(6): 13951402.

[26] VANDAMME M, ULM F J, FONOLLOSA P. Nanogranular packing of C–S–H at substochiometric conditions[J]. Cem Concr Res, 2010, 40(1): 1426.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com