首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
复合活化剂对高掺量矿渣胶凝材料性能及其作用机理的影响
作者: 骞1 2  松1 2 刘建忠1 2  亮1 2 
单位:1. 江苏苏博特新材料股份有限公司 南京 211103 2. 高性能土木工程材料国家重点实验室 南京 210008 
关键词:高掺量 矿渣 胶凝材料 复合活化剂 水化机理 
分类号:TU528.042.1
出版年,卷(期):页码:2016,44(8):1147-1153
DOI:10.14062/j.issn.0454-5648.2016.08.10
摘要:

针对水泥-高掺量矿渣胶凝材料早期强度发展缓慢的现象,自行设计开发了一种用于激发矿渣早期水化活性的复合活化剂,对比研究了复合活化剂与纯硫酸盐对水泥-矿渣胶凝材料性能以及水化机理的影响。结果表明:复合活化剂与纯硫酸盐均能在水化1 d内提高水泥熟料和矿渣的反应程度,促进矿渣产物形态提前由外部水化产物向内部水化产物过渡,提升胶凝材料早期宏观性能;然而使用纯硫酸盐激发的胶凝材料后期性能下降,可能是由于生成过量钙矾石所造成;复合活化剂则通过促进水泥熟料水化、加速矿渣溶解、反应以及改善微观结构性能等提高胶凝材料早期强度提升,对后期性能无副作用。
 

A composite activator was developed to activate a high volume slag-cement binder material for a high early-age strength. The influence of amount of the composite admixture on the properties and hydration mechanism of high volume slag-cement binder material was investigated. The results show that the composite admixture can increase the reaction extent of both cement clinker and slag simultaneously, and enhance the time of transition from outer hydration products to inner hydration products. The macroscopic properties of slag-cement binder material can be promoted by both composite admixture and pure sodium sulfate in early age. However, the performance degradation occurs when the amount of sodium sulfate increases due to too much ettringite formed. The composite admixture accelerates cement hydration rate, dissolution and reaction of slag, and improves the microstructural properties of binder to achieve a higher early-age strength without any side-effect on the late performance.
 

基金项目:
国家“973”计划(SQ2015CB060428);国家自然科学基金(51308262)资助项目。
作者简介:
姜 骞(1988—),男,硕士,助理工程师。
参考文献:

[1] 刘仍光, 阎培渝. 水泥-矿渣复合胶凝材料中矿渣的水化特性[J]. 硅酸盐学报, 2012, 40(8): 1112–1118.
LIU Rengguang, YAN Peiyu. J Chin Ceram Soc, 2012, 40(8): 1112–1118.
[2] Yio M H N, Phelan J C, Wong H S, et al. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes[J]. Cem Concr Res, 2014, 56(2): 171–181.
[3] ShiMengxiao, WangQiang, ZhouZhikai. Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition [J]. Construct Build Mater, 2015, 98: 649–655.
[4] Mo K H, Alengaram U J, Jumaat M Z, et al. Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete[J]. J Cleaner Product, 2015, 91: 297–304.
[5] 唐修生, 蔡跃波, 祝烨然, 等. 大掺量磨细矿渣高性能混凝土抗裂性能的改善[J]. 建筑材料学报, 2009, 12(5): 613–616.
TANG Xiusheng, CAI Yuebo, ZHU Yeran, et al. J Build Mater(in Chinese), 2009, 12(5): 613–616.
[6] 张永娟, 林琛, 张雄. 水泥-矿粉复合胶凝体系的优化配伍[J]. 硅酸盐学报, 2014, 4(4): 494–499.
ZHANG Yongjuan, LIN Chen, ZHANG Xiong. J Chin Ceram Soc, 2014, 4(4): 494–499. (in Chinese)
[7] Juenger M C G, Siddique R. Recent advances in understanding the role of supplementary cementitious materials in concrete [J]. Cem Concr Res, 2015, 78: 71–80.
[8] 孔祥文, 王丹, 隋智通. 矿渣胶凝材料的活化机理及高效活化剂[J].
中国资源综合利用, 2004, 6: 22–26.
KONG Xiangwen, WANG Dan, SUI Zhitong. China Resourc Comprehen Util (in Chinese), 2004, 6: 22–26. (in Chinese)
[9] Kovtun M, Kearsley E P, Shekhovtsova J. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate[J]. Cem Concr Res, 2015, 72: 1–9.
[10] Alaa M R, Sayieda R Z, Ahmed A. Hassan. Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes [J]. Construct Build Mater, 2016(1), 102(1): 811–820.
[11] Rashad A M. An exploratory study on sodium sulphate-activated slag blended with Portland cement under the effect of thermal loads[J]. J Thermal Anal Calorim, 2014, 119: 1–11.
[12] 黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008, 36(3): 405–410.
LI Liangyuan, SHI Zongli, AI Yongping. J Chin Ceram Soc, 2008, 36(3): 405–410.
[13] 丁铸, 王淑平, 张鸣, 等. 硫酸盐对矿渣在硅酸盐水泥中水化活性的激发作用[J]. 中国科技信息, 2008, 18(18): 69–71.
DING Zhu, WANG Shuping, ZHANG Ming, et al. China Scie Technol Inform (in Chinese), 2008, 18(18): 69–71.
[14] Sujata K, HAMLIN M J. Formation of a protective layer during the hydration of cement[J]. J Am Ceram Soc, 1992, 75(75): 1669–1673.
[15] TAYLOR H F W. Cement Chemistry [M]. 2nd Ed. London: Thomas Telford, 1997: 128–140.
[16] 周胜波. 不同来源矿渣水化产物聚合度的FT-IR分析[J]. 四川建筑科学研究, 2013, 3: 226–229.
ZHOU Shengbo. Build Sci Res Sichuan (in Chinese), 2013, 3: 226–229.
[17] 徐玲琳, 王培铭, 张国防, 等. 石膏种类对硅酸盐-铝酸盐混合水泥强度的影响机理[J]. 硅酸盐学报, 2013, 41(11): 1499–1506.
XU Linlin, WANG Peiming, ZHANG Guofang, et al. J Chin Ceram Soc, 2013, 41(11): 1499–1506.
[18] 李顺, 文梓芸. 矿渣–煤渣复合水泥激发剂及其作用机理(英文)[J]. 硅酸盐学报, 2008, 36(1): 113–118.
LI Shun, WEN Ziyun. J Chin Ceram Soc, 2008, 36(1): 113–118.
[19] 孔德玉, 杜祥飞, 杨杨, 等. 纳米二氧化硅团聚特性对水泥水化硬化性能的影响[J]. 硅酸盐学报, 2012, 40(11): 1599–1606.
KONG Deyu, DU Xiangfei, YANG Yang, et al. J Chin Ceram Soc, 2012, 40(11): 1599–1606.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com