首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
相变石膏板制备及其在建筑墙体中应用的研究进展
作者:刘凤利1 2 朱教群1 马保国1 周卫兵1 李元元1 
单位:1. 武汉理工大学 硅酸盐建筑材料国家重点实验室 武汉 430070 2. 河南大学材料与结构研究所 河南 开封 475004 
关键词:相变材料 石膏 相变墙板 围护结构 建筑节能 
分类号:TU599
出版年,卷(期):页码:2016,44(8):1178-1191
DOI:10.14062/j.issn.0454-5648.2016.08.15
摘要:

相变储能已成为太阳能利用领域的研究热点,将相变储能材料应用于建筑围护结构对建筑节能具有重要意义。介绍了适用于建筑节能领域的相变材料的主要性能要求,评述了相变材料选择、改性复配和封装的国内外研究现状,阐述了相变材料与石膏基材的3种复合方法,讨论了相变石膏板在建筑墙体中的主要应用方式。探讨了当前研究中存在的主要问题,并指出了今后研究发展的方向。
 

Phase change energy storage has become the most promising aspect in the application of solar energy, and the application of phase change materials (PCMs) in building envelope for building energy-saving has attracted much attention. The performance of PCMs suitable for construction energy conservation field was discussed. The development on the choice, modification, compounding and encapsulation of PCMs was reviewed. Three methods of compounding PCMs and gypsum matrix were introduced. The major applications of gypsum phase change wallboard in building envelope were summarized. In addition, the existing problems and the further development orientation were also proposed.

 

基金项目:
国家自然科学基金(No.51206125);湖北省科技支撑计划(2014BAA134, 2015BAA107)。
作者简介:
刘凤利(1978—),女,博士研究生,副教授。
参考文献:

[1] ZHANG Y P, ZHOU G B, LIN K P, et al. Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook [J]. Build Environ, 2007, 42: 2197–2209.
[2] STEPHEN D Z. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope [D]. Kentucky: the University of Louisville, 2012.
[3] 顾晓滨, 秦善, 牛菁菁. 相变储能矿物材料研究现状及其展望[J]. 矿物岩石地球化学通报, 2014, 33(6): 932–940.
GU Xiaobin, QIN Shan, NIU Jingjing. Bull Miner, Petr Geochem (in Chinese), 2014, 33(6): 932–940.
[4] 郝先成, 马保国, 李廷芥,等. 建筑围护结构中相变材料的功效分析[J]. 节能技术, 2007, 25(2): 137–140.
HAO Xiancheng, MA Baoguo, LI Tingjie, et al. Energy Conserv Technol (in Chinese), 2007, 25(2): 137–140.
[5] 施韬, 孙伟. 相变储能建筑材料的应用技术进展[J]. 硅酸盐学报, 2008, 36(7): 1031–1036.
SHI Tao, SUN Wei. J Chin Ceram Soc, 2008, 36(7): 1031–1036.
[6] 李峥嵘. 相变墙体在空调降温中的应用[J]. 暖通空调, 2001, 31(2): 41.
LI Zhengrong. Heat Vent Air Cond (in Chinese), 2001, 31(2): 41.
[7] STRITHIH U. Heat transfer enhancement in latent heat thermal storage system for buildings [J]. Energy Build, 2003, 35(1): 1097–1104.
[8] 国家质量监督检验检疫总局, 卫生部, 国家环境保护总局, GB/T 18883-2002. 室内质量空气标准[S]. 北京, 中国标准出版社, 2002.
[9] CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: a review [J]. Renew Sustain Energy Rev, 2011, 15: 1675–1695.
[10] 杨致远, 董建锴, 姜益强,等. 癸酸-月桂酸二元复合相变储能材料循环热稳定性[J]. 建筑科学, 2015, 31(2): 60–65.
YANG Zhiyuan, DONG Jiankai, JIANG Yiqiang, et al. Build Sci (in Chinese), 2015, 31(2): 60–65.
[11] 黄友林. 建筑复合相变材料的储热配方与热物性研究[J]. 广东建材, 2015(8): 28–29.
HUANG Youlin. J Guangdong Build Mater (in Chinese), 2015(8): 28–29.
[12] 吴晟, 李娟, 吴永超, 等. 定形相变材料的制备及其稳定性能的研究[J]. 广东化工, 2015, 42(3): 52–54.
WU Sheng, LI Juan, WU Yongchao,et al. J Guangdong Chem (in Chinese), 2015, 42(3): 52–54.
[13] 闫全英, 王威, 于丹. 相变储能材料应用于建筑围护结构中的研究[J]. 材料导报, 2005, 19(8): 102–105.
YAN Quanying, WANG Wei, YU Dan. Mater Rev (in Chinese), 2005, 19(8): 102–105.
[14] 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009: 109-130.
[15] KOSCHENZ M, LEHMANN B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings [J]. Energy Build, 2014, 36: 567–578.
[16] JIN X, MEDINA M A, ZHANG X S. On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction [J]. Energy, 2014, 73: 780–786.
[17] VICENTE R, SILVA T. Brick masonry walls with PCM macro-capsules: an experimental approach [J]. Appl Therm Eng, 2014, 67: 24–34.
[18] MOSAFFA AH, FERREIRA CAI, TALATI F, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling [J]. Energy Convers Manage, 2013, 67: 1–7.
[19] CASTELL A, MARTORELL I, MEDRANO M, et al. Experimental study of using PCM in brick constructive solutions for passive cooling [J]. Energy Build, 2010, 42: 534–540.
[20] KONG X F, LU S L, HUANG J Y, et al. Experimental research on the use of phase change materials in perforated brick rooms for cooling storage [J]. Energy Build, 2013, 62: 597–604.
[21] ZALBA B, MARIN J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications [J]. Appl Therm Eng, 2003, 23: 251–283.
[22] 罗宇飞. 月桂酸-癸酸相变材料的导热性研究[J]. 中国高新技术企业, 2013, 249(6): 7–9.
LUO Yufei. J Chin High-tech Enterprises (in Chinese), 2013, 249(6):7–9.
[23] FAN L, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review [J]. Renew Sustain Energy Rev, 2011, 15(1): 24–46.
[24] KHODADADI J M, FAN L, BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review [J]. Renew Sustain Energy Rev, 2013, 24: 418–444.
[25] JIANG L Q, GAO L. Densified multiwalled carbon nanotubes-titanium nitride composites with enhanced thermal properties [J]. Ceram Int, 2008, 34(1):231–235.
[26] TENG C, MA C M, CHIOU K C, et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites [J]. Mater Chem Phys, 2011, 126(3): 722–728.
[27] YANG K, GU M Y. Enhanced thermal conductivity of epoxy nano-composites filled with hybrid filler system of triethylenete tramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide [J]. Composites: Part A, 2010, 41(2): 215–221.
[28] MOHAMMADALI B, ALIMORAD R, DAVOOD R, et al. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids [J]. Thermochim Acta, 2012, 54(9): 87–94.
[29] MA A, CHEN W X, HOU Y G. Enhanced thermal conductivity of epoxy composites with MWCNTs/ALN hybrid filler [J]. Polym-Plast Technol Eng, 2012, 51(15): 1578–1582.
[30] IM H, KIM J. The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane) composites [J]. Carbon, 2011, 49(11): 3501–3503.
[31] CHEN L F, YU W, XIE H Q. Enhanced thermal conductivity of nano fluids containing Ag/MWNT composites [J]. Powder Technol, 2012, 23(1): 18–20.
[32] 王瑞杰, 金兆国, 丁汀. 基于正十四烷微胶囊和微封装技术的相变材料技术研究[J]. 载人航天, 2015, 21(3): 249–258.
WANG Ruijie, JIN Zhaoguo, DING Ting. Manned Spaceflight (in Chinese), 2015, 21(3): 249–258.
[33] ZHOU W B, ZHANG L, ZHU J Q, et al. Kinetics study of phase change stearic acid/expanded graphite composite as heat storage material [J]. J Wuhan Univ Technol, 2012, 34 (7): 9–13.
[34] 丁晴, 方昕, 范利武,等. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报: 工学版, 2015, 49(2): 330–336.
DING Qing, FANG Xin, FAN Liwu, et al. J Zhejiang Univ: Eng Sci (in Chinese), 2015, 49(2): 330–336.
[35] LACHHEB M, KARKRI M, ALBOUCHI F, et al. Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method [J]. Energy Convers Manage, 2014, 82: 229–237.
[36] 马保国, 王信刚, 张志峰, 等. 相变蓄能围护结构材料的研究现状与进展[J]. 建筑节能, 2005(9): 35–40.
MA Baoguo, WANG Xingang, ZHANG Zhifeng, et al. Energy Conserv Build (in Chinese), 2005(9): 35–40.
[37] SHILEI L, NENG Z, GOUHUI F. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage [J]. Energy Build, 2006, 38(6): 708–711.
[38] 杜开明, 彭家惠, 李美, 等. 癸酸-月桂酸二元复合相变材料的相变特性研究[J]. 广州化工, 2009(4): 100–103.
DU Kaiming, PENG Jiahui, LI Mei, et al. J Guangzhou Chem (in Chinese), 2009(4): 100–103.
[39] 刘靓侃. 定型相变材料回填的U型埋管换热器性能研究[D]. 大连: 大连理工大学, 2015.
LIU Liangkan. Research on the performance of U-tube heat exchanger with shape-stabilized PCM (in Chinese, dissertation). Dalian: Dalian University of technology, 2015.
[40] 涂逢祥. 建筑节能[M]. 北京: 中国建筑工业出版社, 2002: 134–144.
[41] BAETENS R, JELLE BP, GUSTAVSEN A. Phase change materials for building applications: a state of the art review [J]. Energy Build, 2010, 42: 1361–1368.
[42] ALIZADEH M, SADRAMELI S M. Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations-a review [J]. Renew Sustain Energy Rev, 2016, 58: 619–654.
[43] YAN Q. The thermal properties of shape-stabilized fatty acid mixtures used for wallboard [J]. Int J Sustain Energy, 2011, 30(1): 47–54.
[44] LI M, KAO H T, WU Z S, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials [J]. Appl Energy, 2011, 88: 1606–1612.
[45] LI M, WU Z S, KAO H T. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials [J]. Sol Energy Mater Sol Cells, 2011, 95: 2412–2416.
[46] SAYYAR M, WEERASIRI R R, SOROUSHIAN P, et al. Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions [J]. Energy Build, 2014, 75: 249–255.
[47] KONG X F, LU S L, HUANG J Y, et al. Experimental research on the use of phase change materials in perforated brick rooms for cooling storage [J]. Energy Build, 2013, 62: 597–604.
[48] KONG X F, LU S L, LI Y R, et al. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application [J]. Energy Build, 2014, 81: 404–415.
[49] 胡敏, 王立久, 白媛丽. 界面聚合法制备石蜡微胶囊相变材料[J]. 低温建筑技术, 2015(1): 34–37.
HU Min, WANG Lijiu, BAI Yuanli. Low Temp Archit Tech (in Chinese), 2015(1): 34–37.
[50] LONE S, LEE H M, KIM G M, et al. Facile and highly efficient microencapsulation of a phase change material using tubular microfluidics [J]. Colloids Surf A: Physicochem Eng Aspects, 2013, 422: 61–67.
[51] QIU X L, SONG G L, CHU X D, et al. Microencapsulated n-alkane with p (n-butyl methacrylate-comethacrylic acid) shell as phase change materials for thermal energy storage [J]. Sol Energy, 2013, 91: 212–220.
[52] BORREGUERO A M, RODRGUEZ J F, VALVERDE J L, et al. Characterization of rigid polyurethane foams containing microencapsulated phase change materials: microcapsules type effect [J]. J Appl Polym Sci, 2013, 128: 582–590.
[53] WITOLD F, STANISLAW S, JULIAN C, et al. Synthesis of a paraffin phase change material microencapsulated in a siloxane polymer [J]. Colloid Polymy Sci, 2013, 291: 725–733.
[54] DANIELA P, UTA H, RUTH H, et al. Microencapsulation of alkaline salt hydrate melts for phase change applications by surface thiol-michael addition polymerization [J]. Macromol Mater Eng, 2013, 29(8): 67–77.
[55] HUANG J, WANG T Y, ZHU P P, et al. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials [J]. Thermochim Acta, 2013, 557: 1–6.
[56] GONG X C, LYU Y C, XIANG S Y, et al. Preparation of microcapsules with silicone oil as continuous phase using a solvent evaporation method [J]. Acta Polymerical Sin, 2007(8): 775–779.
[57] 尚建丽, 王争军, 李乔明, 等. 界面聚合法制备微胶囊相变材料的试验研究[J]. 材料导报, 2010, 24(6): 92–94.
SHANG Jianli, WANG Zhengjun, LI Qiaoming, et al. Mater Rev (in Chinese), 2010, 24(6): 92–94.
[58] 罗武生, 喻胜飞. 核壳质量比对石蜡-聚脲相变微胶囊性能的影响[J]. 中国粉体技术, 2015, 21(3): 55–60.
LUO Wusheng, YU Shengfei. China Powder Sci Technol (in Chinese), 2015, 21(3): 55–60.
[59] LI B X, LIU T X, HU L Y, et a1. Fabrication and properties of microencapsulated paraffin SiO2 phase change composite for thermal energy storage [J]. Acs Sustain Chem Energy, 2013(1): 374–380.
[60] WANG L Y, TSAI P S, YANG Y M. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion [J]. J Microencapsulation, 2006, 23 (1): 3–14.
[61] SARI A, ALKAN C, DOGUSCU D K, et al. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications [J]. Sol Energy, 2015, 115: 195–203.
[62] SARI A, ALKAN C, KARAIPEKLI A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid micro-PCM for thermal energy storage [J]. Appl Energy, 2010, 87: 1529–1534.
[63] QIU X L, LI W, SONG G L, et al. Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells [J]. Sol Energy Mater Sol Cells, 2012, 98: 283–293.
[64] WU X L, WANG Y H, ZHU P L, et al. Using UV-vis spectrum to investigate the phase transition process of PMMA-SiO2@ paraffin micro-capsules with copper-chelating as the ion probe [J]. Mater Lett, 2011, 65: 705–707.
[65] CHEN Z H, YU F, ZENG X R, et al. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier [J]. Appl Energy, 2012, 91: 7–12.
[66] PARK S, LEE Y, KIM Y S, et al. Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell [J]. Colloids Surf A: Physicochem Eng Aspects, 2014, 450: 46–51.
[67] INABA H, TU P. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material [J]. Heat Mass Transf, 1997, 32(4): 307–313.
[68] 温虹, 魏婷, 郑柏存, 等. 聚乙二醇膨胀珍珠岩复合相变材料的制备与性能研究[J]. 新型建筑材料, 2015, 42(6): 72–77.
WEN Hong, WEI Ting, ZHENG Baicun, et al. New Build Mater (in Chinese), 2015, 42(6): 72–77.
[69] 王佼, 郑水林. 硅藻土负载复合相变储能材料的制备工艺研究[J]. 非金属矿, 2012, 35(3): 55–57.
WANG Jiao, ZHENG Shuilin. Non-Met Mines (in Chinese), 2012, 35(3): 55–57.
[70] RAMAKRISHNAN S, SANJAYAN J, WANG X M, et al. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites [J]. Appl Energy, 2015, 157: 85–94.
[71] 赵婧, 高鹏举. 复合相变储能骨料的制备研究[J]. 城市建设理论研究: 电子版, 2015, 23(5): 8–8.
ZHAO Jing, GAO Pengju. J Cheng Shi Jian She Li Lun Yan Jiu: Electron Ed (in Chinese), 2015, 23(5): 8–8.
[72] 王小鹏, 张毅, 沈振球, 等. 熔融插层法制备蒙脱石基石蜡复合相变储能材料[J]. 硅酸盐学报, 2011, 39(4): 624–627.
WANG Xiaopeng, ZHANG Yi, SHEN Zhenqiu, et al. J Chin Ceram Soc, 2011, 39(4): 624–627.
[73] 李忠, 于少明, 杭国培, 等. 插层复合法制备纳米复合相变贮能材料[J]. 化学世界, 2006, 46(11): 641–644.
LI Zhong, YU Shaoming, HANG Guopei, et al. J Chem World (in Chinese), 2006, 46(11): 641–644.
[74] 周盾白, 周子鹄, 贾德民. 石蜡/蒙脱土纳米复合相变材料的制备及分析[J]. 化工新型材料, 2009, 39(7): 108–114.
ZHOU Dunbai, ZHOU Zihu, JIA Demin. New Chem Mater (in Chinese), 2009, 39(7): 108–114.
[75] 高安旗, 李玲, 董颖慧. 纳米蒙脱土/混盐复合相变储能材料结构及性能研究[J]. 材料导报, 2015, 29(4): 52–57.
GAO Anqi, LI Ling, DONG Yinghui. Mater Rev (in Chinese), 2015, 29(4): 52–57.
[76] 方晓明, 张正国, 文磊, 等. 硬脂酸/膨润土纳米复合相变储热材料的制备、结构与性能[J]. 化工学报, 2004, 55(4): 679–682.
FANG Xiaoming, ZHANG Zhengguo, WEN Lei, et al. J Chem Ind Eng (in Chinese), 2004, 55(4):679–682.
[77] SONG S, DONG L, CHEN S. Stearic-capric acid eutectic/activated attapulgiate composite as form-stable phase change material for thermal energy storage [J]. Energy Convers Manage, 2014, 81: 306–311.
[78] SARI A, KARAIPEKLI A. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings [J]. Appl Therm Eng, 2012, 37: 208–216.
[79] KARAIPEKLI A, SARI A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage [J]. J Ind Eng Chem, 2010, 16: 767–773.
[80] CHUNG O, JEONG S, KIM S. Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings [J]. Sol Energy Mater Sol C, 2015, 137: 107–112.
[81] XU Biwan, MA Hongyan, Lu Zeyu, et al. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites [J]. Appl Energy, 2015, 160: 358–367.
[82] HUANG J, LU S, KONG X, et al. Form-stable phase change materials based on eutectic mixture of tetradecanol and fatty acids for building energy storage: preparation and performance analysis [J]. Materials, 2013, 6(10): 4758–4775.
[83] CHEN Z, SHAN F, CAO L, et al. Preparation and thermal properties of n-octadecane/molecular sieve composites as form-stable thermal energy storage materials for buildings [J]. Energy Build, 2012, 49: 423–428.
[84] MEMON S A, LO Y T, SHI X, et al. Preparation, characterization and thermal properties of lauryl alcohol/kaolin as novel form-stable composite phase change material for thermal energy storage in buildings [J]. Appl Therm Eng, 2013, 59: 336–347.
[85] MEMON S A, LO Y T, CUI H Z, et al. Preparation, characterization and thermal properties of dodecanol/cement as novel form-stable composite phase change material [J]. Energy Build, 2013, 66: 697–705.
[86] MEMON S A, LO Y T, BARBHUIYA S A, et al. Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag [J]. Energy Build, 2013, 62: 360–367.
[87] SARI A, BICER A. Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs [J]. Energy Build, 2012, 51: 73–83.
[88] TRIGUI A, KARKRI M, KRUPA I. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material [J]. Energy Convers Manage, 2014, 77: 586–596.
[89] 杨懿政. LA/LDPE基定型相变材料的制备及表征[D]. 广州:广东工业大学, 2015.
YANG Yizheng. Preparation and characterization of form-stable phase change materials of LA/LDPE (in Chinese, dissertation). Guangzhou: Guangdong University of Technology, 2015.
[90] 刘娜. 随机近似热模拟修正方法及相变热控关键问题研究[D]. 合肥: 中国科学技术大学, 2012.
LIU Na. Study on stochastic approximation thermal model correction method and phase change thermal control (in Chinese, dissertation). Hefei: University of Science and Technology of China, 2012.
[91] 刘菁伟, 杨文彬, 谢长琼,等. HDPE/EG/石蜡导热定形相变材料的制备及性能[J]. 材料工程, 2015, 43(4): 42–46.
LIU Jingwei, YANG Wenbin, XIE Changqiong, et al. J Mater Eng (in Chinese), 2015, 43(4): 42–46.
[92] CHENG W, ZHANG R, XIE K, et a1. Heat conduction enhanced shape stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties [J]. Sol Energy Mater Sol Cells, 2010, 94(10): 1636–1642.
[93] SOBOLCIAK P, KARKRI M, AL-MAADEED M, et al. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite [J]. Renew Energy, 2016, 88: 372–382.
[94] TRIGUI A, KARKRI M, KRUPA I. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material [J]. Energy Convers Manage, 2014, 77: 586–596.
[95] ALIZADEH M, SADRAMELI S M. Development of free cooling based ventilation technology for buildings: thermal energy storage (TES) unit, performance enhancement techniques and design considerations-a review [J]. Renew Sustain Energy Rev, 2016, 58: 619–654.
[96] 张源. 一种填充石膏基相变材料的复合砌块[P]. CN Patent: 104453065, 2015–03–25.
ZHANG Yuan. A new compound block filled with phase change materials (in Chinese). CN Patent, 104453065, 2015–03–25.
[97] 郑立辉, 宋光森, 韦一良, 等. 石膏载体定形相变材料的制备及其热特性[J]. 新型建筑材料, 2006(1): 49–50.
ZHENG Lihui, SONG Guangshen, WEI Yiliang, et al. N Build Mater (in Chinese), 2006(1): 49–50.
[98] FELDMAN D, BANU D, HAWES D. Low chmn esters of stearic acid as phase change materials for thermal energy storage in buildings [J]. Sol Energy Mater Sol Cells, 1995, 36(3): 311–322.
[99] 白力, 袁艳平, 曹晓玲, 等. 癸酸/棕榈酸相变石膏板传热特性的实验研究[J]. 材料导报, 2012, 26(11): 118–121.
BAI Li, YUAN Yanping, CHAO Xiaolign, et al. Mater Rev (in Chinese), 2012, 26(11): 118–121.
[100] 闫全英, 王立娟, 岳立航. 浸泡法制备的相变墙体传热性能的研究[J]. 新型建筑材料, 2014, 41(8): 15–19.
YAN Quanying, WANG Lijuan, YUE Lihang. New Build Mater (in Chinese), 2014, 41(8): 15–19.
[101] 张建武, 朱建平, 管学茂, 等. 相变储能石膏板的制备及储热性能分析[J]. 化工新型材料, 2015, 43(5): 197–199.
ZHANG Jianwu, ZHU Jianping, GUAN Xuemao, et al. New Chem Mater (in Chinese), 2015, 43(5): 197–199.
[102] ZHANG H, XU Q, ZHAO Z, et al. Preparation and thermal performance of gypsum boards incorporated with micro-encapsulated phase change materials for thermal regulation [J]. Sol Energy Mater Sol Cells, 2012, 102: 93–102.
[103] BORREGUERO A M, CARMONA M, SANCHEZ M L, et al. Improvement of the thermal behavior of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio [J]. Appl Therm Eng, 2010, 30 (10): 1164–1169.
[104] BORREGUERO A M, LUZSANCHEZ M, VALVERDE J L, et al. Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content [J]. Appl Energy, 2011, 88(3): 930–937.
[105] YAN Q, LI L, LIANG C. Thermal performance of shape–stabilized phase change paraffin wallboard [J]. Int J Sustain Energy, 2010, 29(4): 185–190.
[106] EDDHAHAK-OUNI A, COLIN J, BRUNEAU D. On an experimental innovative setup for the macro-scale thermal analysis of materials: application to the phase change material (PCM) wallboards [J]. Energy Build, 2013, 64: 231–238.
[107] EVERS A C, MEDINA M A, FANG Y. Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator [J]. Build Environ, 2010, 45(8): 1755–1761.
[108] CASTELLON C, MEDRANO M, ROCA J, et al. Effect of microencapsulated phase change material in sandwich panels [J]. Renew Energy, 2010, 35(10): 2370–2374.
[109] 王岐东, 董黎明, 代一心, 等. 两种相变材料储能石膏板的研究[J]. 北京工商大学学报: 自然科学版, 2005, 23(5): 4–7.
WANG Qidong, DONG Liming, DAI Yixin, et al. J Beijing Technol Business Univ: Nat Sci Ed (in Chinese), 2005, 23(5): 4–7.
[110] 曾令可, 王慧, 程小苏, 等. 相变储能石膏板制备和性能的研究[J]. 新型建筑材料, 2012, 39(12): 27–29.
ZENG Lingke, WANG Hui, CHENG Xiaosu, et al. New Build Mater (in Chinese), 2012, 39(12): 27–29.
[111] 李悦, 鲍振洲, 谢静超, 等. 含相变储能材料石膏板的物理力学及热工性能[J]. 哈尔滨工业大学学报, 2013, 45(9): 88–63.
LI Yue, BAO Zhenzhou, XIE Jingchao, et al. J Haerbin Inst Technol (in Chinese), 2013, 45(9): 88–63.
[112] 赵之贵, 孙志高, 焦丽君, 等. 新型相变储能试板的制备与性能实验研究[J]. 新型建筑材料, 2015, 42(8): 27–30.
ZHAO Zhigui, SUN Zhigao, JIAO Lijun, et al. New Build Mater (in Chinese), 2015, 42(8): 27–30.
[113] 徐龙, 王海, 高艳娜, 等. 复合相变材料对轻质围护结构建筑室内热环境调节性能研究[J]. 建筑科学, 2013, 29(12): 45–51.
XU Long, WANG Hai, GAO Yanna, et al. Build Sci (in Chinese), 2013, 29(12): 45–51.
[114] SCHOSSIG P, HENING H M, GSCHWANDER S, et al, Micro-encapsulated phase-change materials integrated into construction materials [J]. Sol Energy Mater Sol Cells, 2005, 89: 29–36.
[115] JIN X, ZHANG S L, XU X D, et al. Effects of PCM state on its phase change performance and the thermal performance of building walls [J]. Build Environ, 2014, 81: 334–339.
[116] 肖伟, 王馨, 张寅平. 定形相变墙板改善轻质墙体夏季隔热性能研究[J]. 工程热物理学报, 2009, 30(9): 1561–1563.
XIAO Wei, WANG Xin, ZHANG Yinping. J Eng Thermophys (in Chinese), 2009, 30(9): 1561–1563.
[117] 肖伟, 王馨, 张寅平. 轻质建筑中定型相变内隔墙板冬季应用效果研究[J]. 工程热物理学报, 201l, 32(1): 123–125.
XIAO Wei, WANG Xin, ZHANG Yinping. J Eng Thermophys (in Chinese), 201l, 32(1): 123–125.
[118] 王永生, 丁秋霞. 利用脱硫石膏生产相变石膏板的研究[J]. 新型建筑材料, 2010, 37(8): 1–3.
WANG Yongsheng, DING Qiuxia. New Build Mater (in Chinese), 2010, 37(8): 1–3.
[119] IZQUIERDO-BARRIENTOS M A, BELMONTE J F. A numerical study of external building walls containing phase change materials [J]. Appl Therm Eng, 2012, 47: 73–85.
[120] ASCIONE F, BIANCO N, DE MASI R F, et al. Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season [J]. Appl Energy, 2014, 113: 990–1007.
[121] KUZNIK F, VIRGONE J, JOHANNES K. In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard [J]. Renew Energy, 2011, 36: 1458–1462.
[122] BECKER R. Improving thermal and energy performance of buildings in summer with internal phase change materials [J]. J Build Phys, 2014, 37: 296–324.
[123] 张维维, 程建杰, 张源. 南京地区夏季复合相变混凝土砌块运用效果研究[J]. 混凝土与水泥制品, 2015(6): 79–82.
ZHANG Weiwei, CHENG Jianjie, ZHANG Yuan. Chin Concr Cem Prod (in Chinese), 2015(6): 79–82.
[124] 张正松, 何嘉鹏, 张博. 相变石膏板应用于外墙表面夏季隔热的相变温度分析[J]. 建筑科学, 2012, 28(6): 102–109.
ZHANG Zhensong, HE Jiapeng, ZHANG Bo. Build Sci (in Chinese), 2012, 28(6): 102–109.
[125] 柴国荣, 王伟红, 王晓欧, 等. 递变型外贴式相变墙体[J]. 砖瓦, 2015(9): 48–52.
CAI Guorong, WANG Weihong, WANG Xiaoou, et al. Brick Tile (in Chinese), 2015(9): 48–52.
[126] ATHIENITIS A K, LIU C, HAWES D, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage [J]. Build Environ, 1997, 32(5): 405–410.
[127] 丁理峰, 叶宏. 相变材料和隔热材料在不同地区建筑中应用效果之比较分析[J]. 太阳能学报, 2011, 32(4): 508–516.
DING Lifeng, YE Hong. Acta Energ Sol Sin (in Chinese), 2011, 32(4): 508–516.
[128] HELMUT E F, CORINA S. Thermal performance of phase change wallboard for residential cooling application[R]. Lawrence Berkeley National Laboratory Report. Berkeley: University of California, 1997.
[129] 李丽莎, 闫全英, 金丽丽, 等. 定型相变墙体的制备方法及其传热性能的研究[J]. 太阳能学报, 2012, 33(12): 2135–2139.
LI Lisha, YAN Quanying, JIN Lili, et al. Acta Energ Sol Sin (in Chinese), 2012, 33(12): 2135–2139.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com