首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
稀土改性电化学储能电极材料的研究进展
作者:陈昆峰1 李宫2 梁晰童1 潘伟1 薛冬峰1 
单位:1. 中国科学院长春应用化学研究所 稀土资源利用国家重点实验室 长春 130022 2. 延边大学化学系 吉林 延吉 133002 
关键词:稀土离子 电极材料 锂离子电池 超级电容器 稀土改性材料 
分类号:TM912.9
出版年,卷(期):页码:2016,44(8):1241-1247
DOI:10.14062/j.issn.0454-5648.2016.08.23
摘要:

稀土高值化利用是提升我国稀土资源附加值的重要途径,开拓稀土离子在电化学储能材料中的应用是稀土高值化利用的具体方案之一。综述了稀土离子在电化学储能电极材料应用中的最新研究进展,证明了稀土离子能够有效提升电极材料的电化学性能,同时分析了稀土离子在电化学反应中的作用机制,探讨了稀土离子的利用形式以及高效提升电化学性能的方式。从稀土离子掺杂、稀土离子包覆电极材料入手,具体介绍了稀土离子在稳定电极材料结构、改善电极材料电子电导率、离子扩散特性等中的作用。稀土离子的电负性和离子尺寸是调节锂离子电池和超级电容器电极材料性能的主要设计依据。希望充分利用我国稀土资源优势,提升我国在稀土电化学储能领域中的研究地位和原始创新能力。

This paper reviewed recent developments on rare earth elements used in electrode materials for electrochemical energy storage, i.e., lithium ion batteries and supercapacitors, electrochemical reaction mechanism of rare earth element ions, and the utilization forms of rare earth element ions for enhancing electrochemical performance. The effect of rare earth element ions on the stabilization of the electrode materials structure, the improvement of the electronic conductivity and the ion diffusion was represented. The electronegativity and ionic size of rare earth elements are two important parameters to affect the structure, activity, reactivity of traditional electrode materials because that the ionic sizes of rare earth element ions are greater than those of the transition metal ions, while the electronegativity of rare earth element ions is lower than that of transition metal ions. Moreover, the ionic electronegativity can affect the electrostatic interactions between ions, while the ionic radius can control steric effect between ions. Rare earth element ion doping and coating are two important routes to construct rare earth element modified transition metal oxide materials, which are often used in composite electrode materials.

 

基金项目:
国家自然科学基金项目(51125009,91434118);国家自然科学基金创新研究群体项目(21521092);中国科学院国际合作局对外合作重点项目(121522KYS820150009);中国科学院百人计划及吉林省科技发展计划项目(20160520002JH)。
作者简介:
陈昆峰(1987—),男,博士,助理研究员。
参考文献:

[1] CHEN K, SONG S, LIU F, XUE D. Structural design of graphene for use in electrochemical energy storage [J]. Chem Soc Rev, 2015, 44(17): 6230–6257.
[2] LIU F, SONG S, XUE D, ZHANG H. Folded structured graphene paper for high performance electrode materials [J]. Adv Mater, 2012, 24(8): 1089–1094.
[3] YANG P, TARASCON J M. Towards systems materials engineering [J]. Nat Mater, 2012, 11(7): 560–563.
[4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc 1997, 144: 1188–1194.
[5] WHITTINGHAM M S. History, evolution and future of energy  storage [J]. Proceedings of the IEEE, 2012, 100: 1518–1534.
[6] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors [J]. Nat Mater, 2008, 7(11): 845–854.
[7] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective [J]. J Am Chem Soc, 2013, 135(4): 1167–1176.
[8] LIN T, CHEN I, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage [J]. Science, 2015, 350(6267): 1508–1513.
[9] LIU C, NEALE Z G, CAO G. Understanding electrochemical potentials of cathode materials in rechargeable batteries [J]. Mater Today, 2016, 19(2): 109–123.
[10] CHEN K. XUE D. Materials chemistry toward electrochemical energy storage [J]. J Mater Chem A, 2016, 4(20): 7522–7537.
[11] 强静, 任冰, 李雯, 等. V掺杂Li2FeSiO4正极材料的制备与电化学性能[J]. 硅酸盐学报, 2015, 43(1): 14–20.
QIANG J, REN B, LI W, et al. J Chin Ceram Soc, 2015, 43(1): 14–20.
[12] ESCUDERO-ESCRIBANO M, MALACRIDA P, HANSEN M, et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction [J]. Science, 2016, 352(6281): 73–76.
[13] 洪广言. 稀土化学导论[M]. 北京: 科学出版社, 2014: 21-30.
[14] 伊廷锋, 霍慧彬, 胡信国, 等. 锂离子电池正极材料稀土掺杂研究进展[J]. 电源技术, 2006, 30(5): 419–423.
YIN T, HUO H, HU X, et al. Power Technol (in Chinese), 2006, 30(5): 419–423.
[15] LI K, XUE D. Estimation of electronegativity values of elements in different valence states [J]. J Phys Chem A, 2006, 110(39): 11332–11337.
[16] CHEN K, XUE D. Chemical reaction and crystallization control on electrode materials for electrochemical energy storage [J]. Sci Sin Tech, 2015, 45(1): 36–49.
[17] CHEN K, XUE D. Searching for electrode materials with high electrochemical reactivity [J]. J Materiom, 2015, 451(3): 170–187.
[18] CHEN K, SUN C, XUE D. Morphology engineering of high performance binary oxide electrodes [J]. Phys Chem Chem Phys, 2014, 17(2): 732–750.
[19] LI K, SHAO J, XUE D. Site selectivity in doped polyanion cathode materials for Li-ion batteries [J]. Funct Mater Lett, 2013, 6(4): 1350043.
[20] ZHANG Q, VERDE M G, SEO J, et al. Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries [J]. J Power Sources, 2015, 280: 355–362.
[21] LI Y, WANG Z, ZHAO D, ZHANG L. Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries [J]. Electrochim Acta, 2015, 182: 368–375.
[22] SONG S, AHN K, KANATZIDIS M G, et al. Effect of an Internal Electric Field on the Redox Energies of ALn TiO4 (A= Na or Li, Ln= Y or Rare-Earth) [J]. Chem Mater, 2013, 25(19): 3852–3857.
[23] 李明明, 张英杰, 董鹏. 锂离子电池正极材料稀土掺杂的研究进展[J]. 电源技术, 2015, 39(7): 1539–1542.
LI M, ZHANG Y, DONG P. Power Technol (in Chinese), 2015, 39(7):1539–1542.
[24] ZHAO N, LI Y, ZHI X, et al. Effect of Ce3+ doping on the properties of LiFePO4 cathode material [J]. J Rare Earths, 2016, 34(2): 174–180.
[25] LI J Z, WANG S Y, WEI L H et al. Effective enhancement of the electrochemical properties for LiFePO4/C cathode materials by lanthanum Doping [J]. Int J Electrochem Sci, 2015, 10(8): 6135–6145.
[26] WANG W, QIAO Y, HE L, et al. Study on LiFe1−xSmxPO4/C used as cathode materials for lithium-ion batteries with low Sm component [J]. Ionics, 2015, 21(8): 2119–2125.
[27] SIVAKUMAR M, MURUGANANTHAM R, SUBADEVI R. Investigations on rate performance of polyol technique developed LiFePO4/CeO2 composite materials for Rechargeable Lithium batteries [J]. RSC Adv, 2015, 105(7): 86126–86136.
[28] CHEN K, XUE D. Anode performances of mixed LiMn2O4 and carbon black toward lithium-ion battery [J]. Funct Mater Lett, 2014, 7(2): 1450017.
[29] CHEN K, DONAHOE A C, NOH Y D, et al. LiMn2O4-based materials as anodes for lithium-ion battery [J]. Funct Mater Lett, 2014, 7(1): 1350070.
[30] HAN C, ZHU C, SAITOA G, AKIYAMA T. Improved electrochemical properties of LiMn2O4 with the Bi and La co-doping for lithium-ion batteries [J]. RSC Adv, 2015, 5(89): 73315–73322.
[31] PATEL R L, XIE H, PARK J, et al. Atomic layer deposition: significant capacity and cycle-life improvement of lithium-ion batteries through ultrathin conductive film stabilized cathode particles [J]. Adv Mater Interfaces, 2015, 2(8): 1500046.
[32] ZHANG Y, ZHAI Y. Preparation of Y-doped ZrO2 coatings on MnO2 electrodes and their effect on electrochemical performance for MnO2 electrochemical supercapacitors [J]. RSC Adv, 2016, 6(3): 1750–1759.
[33] LIU H , HE P, LI Z, et al. A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte [J]. Electrochim Acta, 2006, 51(10): 1925–1931.
[34] MEFFORD J T, HARDIN W G, DAI S, et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes [J]. Nat Mater, 2014, 726–732(13): 726–732.
[35] SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes [J]. Nat Mater, 2013, 12(9): 827–835.
[36] MCCALLA E, ABAKUMOV A M, SAUBANERE M, et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries [J]. Science, 2015, 350(6267): 1516–1521.
[37] WANG H, ZHANG J, HANG X, et al. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering [J]. Angew Chem Int Ed, 2015, 127(4): 1211–1215.
[38] LI Y, WANG Z, ZHAO D, ZHANG L. Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries [J]. Electrochim Acta, 2015, 182: 368–375.
[39] HUANG S, WILSON B E, WANG B, et al. Y-doped Li8ZrO6: A Li-Ion battery cathode material with high capacity [J]. J Am Chem Soc, 2015, 137(34): 10992–11003.
[40] CHEN F J, TAO F,WANG C M, et al. The influence of improved carbon coating layer with nanometer-sized CeO2 interconnector on the enhanced electrochemical performance of LiMnPO4 [J]. J Power Sources, 2015, 285: 367–373.
[41] MOHAN P, KALAIGNAN G P. Electrochemical performance of La2O3-coated layered LiNiO2 cathode materials for rechargeable lithium-ion batteries [J]. Ionics, 2013, 19(6): 895–902.
[42] SUN W, MO Z, LI H, et al. Preparation and electrochemistry of nanostructured ppy/graphite nanosheets/rare earth ions composites for supercapacitor [J]. Polym Eng Sci, 2014, 54(12): 2731–2738.
[43] SUN W, MO Z. Synthesis, characterization and supercapacitors of electrically conductive PPy/graphene/rare earth ions composites [J]. Polym Bull, 2014, 71(9): 2173–2184.
[44] FIC K, MELLER M, FRACKOWIAK E. Strategies for enhancing the performance of carbon/carbonsupercapacitors in aqueous electrolytes [J]. Electrochim Acta, 2014, 128(5): 210–217.
[45] CHEN K, XUE D. Rare earth and transitional metal colloidal supercapacitors [J]. Sci China Tech Sci, 2015, 58(11): 1768–1778.
[46] 陈昆峰, 薛冬峰. 胶体离子超级电容器 [J]. 电化学, 2015, 21(6): 534–542.
CHEN K, XUE D. J Electrochem (in Chinese), 2015, 21(6): 534–542.
[47] 陈昆峰, 薛冬峰. 胶体离子超级电容器的比容量评价[J]. 应用化学, 2016, 33(1): 18–14.
CHEN K, XUE D. Chin J Appl Chem (in Chinese), 2016, 33(1): 18–14.
[48] CHEN K, XUE D. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode[J]. J Colloid Interface Sci, 2014, 416: 172–176.
[49] CHEN K, XUE D. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance [J]. J Colloid Interface Sci, 2014, 424: 84–89.
[50] CHEN K, XUE D. Formation of electroactive colloids via in-situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor [J]. J Colloid Interface Sci, 2014, 430: 265–270.
[51] CHEN X, CHEN K, WANG H, et al. Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system [J]. Cryst Eng Commun, 2014, 16(29): 6707–6715.
[52] CHEN X, CHEN K, WANG H, et al. Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte [J]. Electrochim Acta, 2014, 147: 216–224.
[53] CHEN K, YANG Y, LI K, et al. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials [J]. ACS Sustain Chem Eng, 2014, 2(3): 440–444.
[54] CHEN K, SONG S, XUE D.An ionic aqueous pseudocapacitor system: electroactive ions in both salt-electrode and redox-electrolyte [J]. RSC Adv, 2014, 4(44): 23338–23343.
[55] CHEN K, XUE D, KOMARNENI S. Colloidal pseudocapacitor: nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition [J]. J. Power Sources, 2015, 279: 365–371.
[56] CHEN K, SONG S, LI K, XUE D. Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes [J]. Cryst Eng Commun, 2013, 15(47): 10367–10373.
[57] CHEN K, XUE D. Crystallization of tin chloride for promising pseudocapacitor electrode [J]. Cryst Eng Commun, 2014, 16(21): 4610–4618.
 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com