首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Mullite–Si3N4/SiC复相陶瓷的制备及性能
作者:潘波1 倪箐1 殷波2 陈涵1 郭露村1 
单位:1. 南京工业大学材料科学与工程学院 南京 210009 2. 宜兴摩根热陶瓷有限公司 江苏 宜兴 214222 
关键词:氮化硅 碳化硅 莫来石 耐磨性能 密度 
分类号:TQ174
出版年,卷(期):页码:2016,44(9):1259-1264
DOI:10.14062/j.issn.0454-5648.2016.09.01
摘要:

采用无压烧结工艺制备Mullite–Si3N4/SiC(M–SBSN)复相陶瓷,分析了SiC含量、烧结助剂和莫来石添加量对Si3N4/SiC(SBSN)陶瓷材料力学性能、耐磨性能和热学性能的影响。结果表明:莫来石的引入显著提高了SBSN陶瓷的烧结特性、抗弯强度、耐磨性和抗热震性,在相对较低的烧成温度(1 600 ℃)制备了低密度、高耐磨性的M–SBSN复相陶瓷。当莫来石添加量为30%时,样品的耐磨性能最好,磨损量与Al2O3和ZrO2材料相比降低了80%~85%,而密度只有Al2O3的76%和ZrO2的48%。摩擦磨损试验后,M–SBSN复相陶瓷材料与Al2O3、ZrO2材料相比具有更浅的划痕和损伤度,与摩擦磨损试验结果相一致。
 

Mullite–Si3N4/SiC (M–SBSN) composite ceramic was fabricated by a pressless sintering process. The effects of SiC content and sintering additives as well as mullite on the wearability and thermal/mechanical properties of Si3N4/SiC(SBSN) were investigated. The results show that the addition of mullite can improve the sintering properties, bending strength, abrasion resistance and thermal shock resistance as well. M–SBSN composite ceramic with a low density and a superior wearability can be obtained at  1 600 ℃, which is a relatively low temperature for sintering. The optimal abrasion resistance occurs at mullite addition of 30%. Also, the wearability of the sample is superior to that of Al2O3 and ZrO2 as the wear loss is 80%–85% lower than that of Al2O3 and ZrO2. Moreover, the density is only 76% of Al2O3, and 48% of ZrO2. According to the SEM micrographs, the wearing surfaces of M–SBSN are less worn than those of Al2O3 and ZrO2, which are consistent with the results of the friction and wear test.

 

基金项目:
江苏高校优势学科建设工程项目(PAPD)资助。
作者简介:
潘 波(1987—),男,硕士。
参考文献:

[1]刘英杰, 成克强. 磨损失效分析[M]. 北京: 机械工业出版社, 1991: 1–2.
[2]王蕾, 张静浩. 耐磨材料及其应用[M]. 武汉: 湖北科学技术出版社, 2004: 36–37.
[3]BURRIS D L, BOESL B, BOURNE G R, et al. Polymeric nanocomposites for tribological applications[J]. Macromol Mater Eng, 2007, 292(4): 387–402.
[4]赵能伟, 郑勇. 高温耐磨抗氧化陶瓷材料的研究进展[J]. 硅酸盐通报, 2007, 26(4): 737–742.
ZHAO Nengwei, ZHENG Yong. J Bull Chin Ceram Soc (in Chinese), 2007; 26(4): 737–742.
[5]CHIU C C. Influence of surface oxidation on thermal-shock resistance and flexural strength of SiC/Al2O3 composites[J]. J Mater Sci, 1994, 29(8): 2078–2082.
[6]包亦望. 氧化铝、氮化硅和碳化硅的疲劳特性与寿命预测[J]. 硅酸盐学报, 2001, 29(1): 21–25.
BAO Yiwang. J Chin Ceram Soc, 2001; 29(1): 21–25.
[7]BASU B, VLEUGELS J, VAN DER BLEST O. Microstructure-toughness-wear relationship of tetragonal zirconia ceramics[J]. J Eur Ceram Soc, 2004, 24(7): 2031–2040.
[8]PADTURE N P. In situ-toughened silicon-carbide[J]. J Am Ceram Soc, 1994, 77(2): 519–523.
[9]吴芳, 王零森, 张金生, 等. 热压碳化硼氧化行为及其对摩擦特性的影响[J]. 硅酸盐学报, 2001, 29(1): 44–48.
WU Fang, WANG Lingsen, ZHANG Jinsheng, et al. J Chin Ceram Soc, 2001; 29(1): 44–48.
[10]RILEY F L. Silicon nitride and related materials[J]. J Am Ceram Soc, 2000, 83(2): 245–265.
[11]陈达谦. 工程陶瓷的磨损机理与氧化铝陶瓷耐磨性的提高[J]. 陶瓷, 2000, 146(4): 9–11.
CHEN Daqian. Ceramic (in Chinese), 2000: 146(4): 9–11.
[12]LI K, GUO L. Evaluation of thermal shock resistance of alμmina ceramics[J]. Key Eng Mater, 2012, 492: 333–336.
[13]黄莉萍, 薛文龙, 李敏中. 添加氧化镁的热压氮化硅制备工艺和性能研究[J]. 硅酸盐学报, 1979, 7(4): 346–354.
HUANG Liping, XUE Wenlong, LI Minzhong. J Chin Ceram Soc, 1979, 7(4): 346–354.
[14]董文麟, 氮化硅陶瓷[M]. 北京, 中国建筑工业出版社, 1987: 74–75.
[15]张福成, 罗海辉, STEVE-G R, 等. 断裂方式对氧化铝基复合陶瓷耐磨性的影响[J]. 无机材料学报, 2007, 22(3): 493–498.
ZHANG Fucheng, LUO Haihui, STEVE-G R, et al. J Inorg Mater (in Chinese), 2007: 22(3): 493–498.
张震宇, 胡敏, 陈涵, 等. 氧化镁基MgAl2O4复相陶瓷的制备与性能[J]. 硅酸盐学报, 2015, 43(9): 1266–1270.
ZHANG Zhenyu, HU Min, CHEN Han, et al. J Chin Ceram Soc, 2015, 43(9): 1266–1270.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com