首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Er3+掺杂对Na0.25K0.25Bi2.5Nb2O9压电陶瓷电学和光学性能的影响
作者:罗雨涵 江向平 陈超 涂娜 陈云婧 江兴安 
单位:景德镇陶瓷大学材料科学与工程学院 江西省先进陶瓷材料重点实验室 江西 景德镇 333001 
关键词:铌酸铋钠钾 压电陶瓷 电学性能 上转换发光 
分类号:TQ174
出版年,卷(期):页码:2016,44(9):1281-1286
DOI:10.14062/j.issn.0454-5648.2016.09.05
摘要:

采用传统固相法制备Na0.25K0.25Bi2.5Nb2O9+xEr (NKBN–xEr,0≤x≤0.06) 铋层状无铅压电陶瓷,研究了不同Er3+掺杂量对NKBN–xEr陶瓷显微结构、电学性能及上转换荧光性能的影响。结果表明:所有样品均为单一的铋层状结构;随着Er3+掺杂量x从0增加到0.06,样品的晶粒尺寸逐渐增大,Curie温度TC升高,适量的Er3+掺杂能提高陶瓷的压电性能;电导率与温度的关系在高温区域,热激活氧空位二级电离电子电导起主导作用;在980 nm激光激发下,所有样品在513~570和644~679 nm处可观察到绿光和红光发射峰,分别对应于Er3+的2H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4I15/2能级跃迁。当x = 0.02时,电学性能最佳:压电常数d33=22 pC/N,介电损耗tanδ=0.38 %,品质因子Qm=2 324,且样品均具有良好的荧光性能,表明该组分陶瓷可作为高温应用光—电多功能材料。
 

Na0.25K0.25Bi2.5Nb2O9+xEr(NKBN–xEr,0≤x≤0.06) bismuth layered structure lead-free piezoelectric ceramics were prepared by a conventional solid-state reaction method. The microstructure, electrical and up-conversion properties of NKBN–xEr ceramics were investigated. The results show that all the samples possess a single bismuth layered structure. The average grain size and the Curie temperature TC of samples increase with increasing Er3+ contents. The piezoelectric properties of the ceramics can be optimized by the addition of a proper content of Er3+. The variation of electrical conductivities with temperature was also analyzed, revealing the dominating conduction from the second ionization from oxygen vacancies at high temperatures. Green or red emissions peaks at 513–570 nm and 644–679 nm for all the compositions appear under an excitation of 980 nm laser, which are attributed to the energy level transitions 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2, respectively. The ceramic with x=0.02 has the preferable up-conversion properties and exhibits the optimum electrical properties, i.e., d33=22 pC/N, tanδ=0.38 %, and Qm=2 324, indicating that this ceramic can be suitable for high-temperature optical-electrical multifunctional applications.
 

基金项目:
国家自然科学基金(51562014,51262009);江西省自然科学基金(20133ACB20002,20142BAB216009);江西省高等学校“先进陶瓷材料”科技创新团队;江西省教育厅科技项目(GJJ150911,GJJ150931,GJJ150933)资助。
作者简介:
罗雨涵(1993—),女,硕士研究生。
参考文献:

[1]EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442(7104): 759–765.
[2]NAN C W, BICHURIN M I, DONG S, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions[J]. J Appl Phys, 2008, 103(3): 031101–031101–35.
[3]RYU H, SINGH B K, BARTWAL K S, et al. Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3:Pr3+[J]. Acta Mater, 2008, 56(3): 358–363.
[4]WANG X, XU C, YAMADA H, et al. Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics[J]. Adv Mater, 2005, 36(17): 1254–1258.
[5]ZHANG Q W, CHEN K, WANG L L, et al. A highly efficient, orange light-emitting (K0.5Na0.5)NbO3: Sm3+/Zr4+ lead-free piezoelectric material with superior water resistance behavior[J]. J Mater Chem. c, 2015, 3(20): 5275–5284.
[6]BOKOLIA R, THAKUR O P, RAI V K, et al. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics[J]. Ceram Int, 2015, 41(4): 6055–6066.
[7]PENG D, ZOU H, XU C, et al. Er doped BaBi4Ti4O15  multifunctional ferroelectrics: Up-conversion photoluminescence, dielectric and ferroelectric properties[J]. J Alloys Compd, 2013, 552(9): 463–468.
[8]TANG M, WANG X, PENG D, et al. Strong green and red up-conversion emission in Ho3+, Yb3+ and Li+ Co- or Tri-doped SrAl2O4 ceramics[J]. Cheminform, 2012, 529(529): 49–51.
[9]WANG C M, WANG J F, Zhang S, et al. Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature[J]. J Appl Phys, 2009, 105(9): 094110(1–5).
[10]WANG C M, WANG J F. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification[J]. Appl Phys Lett, 2006, 89(20): 202905(1–3).
[11]JIANG X P, WANG X J, WEN J X, et al. Microstructure and electrical properties of Mn-modified bismuth-layer Na0.25K0.25Bi2.5Nb2O9 ceramics[J]. J Alloys Compd, 2012, 544(32): 125–128.
[12]顾大国, 李国荣, 郑嘹赢, 等. 锰对改善CaBi4Ti4O15高温压电陶瓷性能的研究[J]. 无机材料学报, 2008, 23(3): 626–630.
GU Daguo, LI Guorong, ZHENG Liaoying, et al. J Inorg Mater (in Chinese), 2008(3): 626–630.
[13]张丽娜, 李国荣, 赵苏串, 等. Nb掺杂Bi4Ti3O12层状结构铁电陶瓷的电行为特性研究[J]. 无机材料学报, 2005, 20(6): 1389–1395.
ZHANG Lina, LI Guorong, ZHAO Suchuan, et al. J Inorg Mater(in Chinese), 2005, 20(6): 1389–1395.
[14]徐琴, 丁士华, 宋天秀. Nd2O3掺杂对BCZT陶瓷结构及介电性能的影响[J]. 硅酸盐学报, 2013, 41(3): 292–297.
XU Qin, DING Shihua, SONG Tianxiu. J Chin Ceram Soc, 2013, 41(3): 292–297.
[15]YOKOI A, SUGISHITA J. Ferroelectric properties of mixed bismuth layer-structured Na0.5Bi8.5Ti7O27, ceramic and SrxNa0.5–x/2 Bi8.5–x/2Ti7O27solid solutions[J]. J Alloys Compd, 2008, 452(452): 467–472.
[16]TAWICHAI N, SUTJARITTANGTHAM K, TUNKASIRI T, et al. Dielectric dispersion and impedance spectroscopy of B3+-doped Ba(Ti0.9Sn0.1)O3 ceramics[J]. Ceram Int, 2013, 39: S145–S148.
[17]沈宗洋. 稀土Nd掺杂SrTiO3基高储能介质陶瓷缺陷结构及介电性能研究[D]. 武汉: 武汉理工大学,2 007.
SHEN Zongyang. Study on defect structure and dielectric properties of Nd-doped SrTiO3-based ceramics with high energy storage density(in Chinese, dissertation). Wuhan: Wuhan University of Technology, 2007.
[18]JIANG X A, JIANG X P, CHEN C, et al. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation[J]. Front Mater Sci, 2016, 10(1): 31–37.
[19]HE L X, GAO M. LI C E, et al. Effects of Cr2O3 addition on the piezoelectric properities and microstructure of PbZrxTiy (Mg1/3Nb2/3)1–x–yO3 ceramics[J]. J Eur Ceram Soc, 2001, 21(6): 703–709.
[20]CUI R R, DENG C Y, GONG X Y. Luminescent performance of rare earths doped CaBi2Ta2O9 phosphor[J]. J Rare Earths, 2013, 31(6): 546–550.
[21]WU X, CHI M L, KWOK K W. Effect of phase transition on photoluminescence of Er-doped KNN ceramics[J]. J Lumin, 2014, 155(6): 343–350.

 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com