[1] CAO X Q, VASSEN R, STöVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004, 24(1): 1–10.
[2] VASSEN R., CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. J Am Ceram Soc, 2000, 83(8): 2023–2028.
[3] WANG J, BAI S X, ZHANG H, et al. The structure, thermal expansion coef?cient and sintering behavior of Nd3+ doped La2Zr2O7 for thermal barrier coatings[J]. J Alloy Compd, 2009, 476(1–2): 89–91.
[4] YAMAZAKI S, YAMASHITA T, MATSUI T, et al. Thermal expansion and solubility limits of plutonium-doped lanthanum zirconates[J]. J Nucl Mater, 2001, 294(1–2): 183–187.
[5] LEHMANN H, PITZER D, PRACHT G, et al. Thermal conductivity and thermal expansion coef?cients of lanthanum rare-earth-element zirconate system[J]. J Am Ceram Soc, 2003, 86(8): 1338–1344.
[6] NAROTTAM P B, ZHU D M. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings[J]. Mater Sci Eng A, 2007, 459(1–2): 192–195.
[7] WAN C L, ZHANG W, WANG Y F, et al. Glass–like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore[J]. Acta Mater, 2010, 58(18): 6166–6172.
[8] WANG Y F, YANG F, XIAO P. Glass-like thermal conductivities in (La1–x1Yx1)2 (Zr1–x2Yx2)2O7–x2 (x=x1+x2, 0≤x≤1.0) solid solutions[J].
Acta Mater, 2012, 60(20): 7024–7033.
[9] WANG Y F. The improvement of thermal and mechanical properties of La2Zr2O7-based pyrochlores as high temperature thermal barrier coatings[D]. Manchester: The University of Manchester, 2013.
[10] ZHANG Y H, XIE M, ZHOU F, et al. Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3[J]. Ceram Int, 2014, 40: 9151–9157.
[11] ZHANG Y H, XIE M, ZHOU F, et al. Influence of Er substitution for La on the thermal conductivity of (La1–xErx)2Zr2O7 pyrochlores[J]. Mater Res Bull, 2015, 64: 175–181.
[12] SARUHAN B, FRANCOIS P, FRISTSCHER K, et al. EB–PVD processing of pyrochlore-structured La2Zr2O7-based TBCs[J]. Surf Coat Technol, 2004, 182: 175–183.
[13] PADTURE N P, GELL M, JORDAN E H. Materials science thermal barrier coatings for gas turbine engine apptications[J]. Science, 2002, 296(5566): 280–284.
[14] SUBRAMANIAN M A, ARAVAMUDAN G, SUBBA RAO G V. Oxide pyrochlores-A review[J]. Progr in Solid State Chem, 1983, 15(2): 55–143.
[15] HANAKO N, YAMAMURA H, AARAI T, et al. Effect of cation radius ratio and unit cell free volume on oxide-ion conductivity in oxide systerms with pyrochore-type composition[J]. J Ceram Soc Jpn, 2004, 112(10): 541–546.
[16] YAMAMURA H, NISHINO H, KAKINUMA K, NOMURA K. Electrical conductivity anomaly around fluorite–pyrochlore phase boundry[J]. Solid State Ion, 2003, 158(3–4): 359–365.
[17] KINGERY W D, BOWEN H K, UHLMANN D R. Introduction to ceramics[M]. New York: John Wiley Sons, 1976: 589–594
[18] QU Z X, WAN C L, PAN W. Thermal expansion and defect chemistry of MgO–doped Sm2Zr2O7[J]. Chem Mater, 2007, 19(20): 4913–4918.
[19] MCCAULEY R A. Structural characteristics of pyrochlore formation[J]. J Appl Phys, 1980, 51(1): 290–294.
[20] CHAKOUMAKOS B C. Systematics of the pyrochlore structure type, ideal A2B2X6Y[J]. J Solid State Chem, 1984, 53(1): 120–129.
[21] QU Z X, WAN C L, PAN W. Thermophysical properities of rare–earth stannates: Effect of pyrochlore structure[J]. Acta Mater, 2012, 60(6–7): 2939–2949.
[22] ZHOU H M, YI D Q, YU Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings[J]. J Alloys Compd, 2007, 438(1–2): 217–221.
[23] KLEMENS P G, GELL M. Thermal conductivity of thermal barrier coatings[J]. Mater Sci Eng A, 1998, 245(2): 143–149.
[24] CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annu Rev Mater Res, 2003, 33(1): 383–417.
|