首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
60Co 伽马射线辐照改性 As2S3玻璃的纳米压痕试验
作者:KAVETSKYYTaras1 2 BORCJaroslaw3 STEPANOVAndreyL.4 5 6 
单位:1. Drohobych Ivan Franko State Pedagogical University  24 I.Franko Str.  82100 Drohobych  Ukraine  2. The John Paul II  Catholic University of Lublin  14 Al. Rac?awickie  20-950 Lublin  Poland  3. Lublin University of Technology   38 Nadbystrzycka Str.  20-618 Lublin  Poland  4. Kazan Physical-Technical Institute  Russian Academy of Sciences   10/7 Sibirskiy Trakt  420029 Kazan  Russia  5. Kazan National Research Technological University  68 Karl Marx Str.   420015 Kazan  Russia  6. Kazan Federal University  18 Kremlevskaya Str.  420008 Kazan  Russia 
关键词:硫系玻璃 机械性能 纳米压痕 辐照改性 
分类号:TU528
出版年,卷(期):页码:2016,44(11):0-0
DOI:10.14062/j.issn.0454-5648.2016.11.14
摘要:

采用纳米压痕技术对60Co ?-射线辐照改性前后As2S3玻璃的表面机械性能(即硬度和弹性模量)进行超纳硬度仪(UNHT) 测试,压痕深度为 200~1 600 nm。结果表明:经平均量子能 1.25 MeV、累计剂量 2.41 MGy 的 60Co ?-射线辐照后,g-As2S3(g表示玻璃态)的表面硬度和弹性模量与辐照前相比得以提高。对于 g-As2S3表面机械性能的长期辐照诱导改性,具有辐照诱导 氧化层的辐照样品与经过清洗和抛光处理除去氧化层的辐照样品相比,其实验数据显示宽分布特性。 

The results of the surface mechanical properties (i.e., hardness and elastic modulus) in the unmodified and radiation-modified As2S3 glass measured about after 60Co ?-irradiation, using a nanoindentation technique with an ultra nano hardness tester (UNHT) were reported. It is indicated that the ?-irradiated g-As2S3 (g- for glassy) with the average energy of 60Co ?-quanta of 1.25 MeV and the accumulated dose of 2.41 MGy exhibits the increased surface hardness and elastic modulus values, compared to the unirradiated material, in the range of 200–1 600 nm indentation depth. In the long-term radiation-induced improvement of the surface mechanical properties in g-As2S3, the broader distribution of the experimental data was detected for the irradiated sample with radiation-induced oxidized layer, compared to the clean sample without the layer that was removed by washing and polishing. 
 

基金项目:
作者简介:
KAVETSKYY Taras, male, Professor.
参考文献:

[1] EGGLETON B J, LUTHER-DAVIES B, RICHARDSON K. Chalcogenide photonics [J]. Nature Photonics, 2011, 5: 141–148.

[2] POPESCU M A. Non-Crystalline Chalcogenides [M]. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000.

[3] TANAKA K. Reversible photoinduced change in intermolecular distance in amorphous As2S3 network [J]. Appl Phys Lett, 1975, 26(5): 243–245.

[4] TANAKA K. Photoexpantion in As2S3 glass [J]. Phys Rev B, 1998, 57(9): 5163–5167.

[5] TANAKA K. Photoinduced structural changes in amorphous semiconductors [J]. Semiconductors, 1998, 32(8): 861–866.

[6] KAVETSKYY T S, VALEEV V F, NUZHDIN V I, et al. Optical properties of chalcogenide glasses with ion-synthesized copper nanoparticles [J]. Tech Phys Lett, 2013, 39(1): 1–4.

[7] STEPANOV A L, EVLYUKHIN E A, NUZHDIN V I, et al. Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation [J]. Appl Phys A: Mater Sci Process, 2013, 111: 261–264.

[8] KAVETSKYY T, STEPANOV A L, BAZAROV V V, et al. Comparative study of optical properties of polarizing oxide glasses with silver nanorods and chalcogenide glasses with copper nanoparticles [J]. Phys Procedia, 2013, 48: 191–195.

[9] KAVETSKYY T S, NUZHDIN V I, VALEEV V F, et al. Optical properties of the synthesized ZnO with ion implanted silver nanoparticles [J]. Tech Phys Lett, 2015, 41(6): 537–539.

[10] STRONSKI A V, PAIUK O P, STRELCHUK V V, et al. Photoluminescence of As2S3 doped with Cr and Yb [J]. Semicond Phys Quant Electron Optoelectron, 2014, 17(4): 341–345.

[11] KAVETSKYY T S. Radiation-induced optical darkening and oxidation effects in As2S3 glass [J]. Semicond Phys Quant Electron Optoelectron, 2014, 17(3): 308–312.

[12] KAVETSKYY T S, STEPANOV A L. Effects of gamma-irradiation and ion implantation in chalcogenide glasses [M] // KARMAKAR B, RADEMANN K, STEPANOV A L eds. Glass Nanocomposites: Synthesis, Properties and Applications. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier Academic Press, 2016: 341–358.

[13] SHPOTYUK M, SHPOTYUK O, GOLOVCHAK R, et al. FSDP-related correlations in ?-irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised [J]. J Phys Chem Solids, 2013, 74: 1721–1725.

[14] SHPOTYUK O, KOVALSKIY A, KAVETSKYY T, et al. Chemical interaction of chalcogenide vitreous semiconductors with absorbed impurities induced by ?-irradiation [J]. J Optoelectron Adv Mater, 2003, 5(5): 1181–1185.

[15] SHPOTYUK O I. Radiation-induced effects in chalcogenide vitreous semiconductors [M] // FAIRMAN R, USHKOV  B eds. Semiconducting Chalcogenide Glass I: Glass Formation, Structure, and Stimulated Transformations in Chalcogenide Glasses – Semiconductors and Semimetals: Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier Academic Press, 2004: 215–260.

[16] KAVETSKYY T S. Long-term radiation-induced optical darkening effects in chalcogenide glasses [J]. Semicond Phys Quant Electron Optoelectron, 2016, in press.

[17] SHPOTYUK M V, VAKIV M M, SHPOTYUK O I, et al. On the origin of radiation-induced metastability in vitreous chalcogenide semiconductors: The role of intrinsic and impurity-related destruction-polymerization transformations [J]. Semicond Phys Quant Electron Optoelectron, 2015, 18(1): 90–96. [18] BORISOVA Z U. Chemistry of Glassy Semiconductors (in Russian) [M]. Leningrad: LSU, 1972.

[19] FELTZ A. Amorphous and Vitreous Inorganic Solids (in Russian) [M]. Moscow: Mir, 1986. 

[20] KAVETSKYY T, KABAN I, SHPOTYUK O, et al. On the structural-optical correlations in radiation-modified chalcogenide glasses [J]. J Phys: Conf Ser, 2011, 289: 012007(1–6).

[21] KAVETSKYY T, SHPOTYUK O, KABAN I, et al. Atomic- and void-species nanostructures in chalcogenide glasses modified by high-energy ?-irradiation [J]. J Optoelectron Adv Mater, 2007, 9(10): 3247–3252.

[22] Introduction on Instrumented Indentation, http://www.csm-instruments. com. [23] MELNICHENKO T M, FEDELESH V I, JURKIN I M, et al. Internal pressure, microhardness and fluidity limit in the chalcogenide glasses [J]. Phys Chem Solid State, 2002, 3(2): 292–298.

 [24] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J Mater Res, 1992, 7(6): 1564–1583.

[25] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J Mater Res, 2004, 19(1): 3–20.

[26] KAVETSKYY T S, BORC J, KUKHAZH Y Y, et al. The influence of low dose ion-irradiation on the mechanical properties of PMMA probed by nanoindentation [M] // PETKOV P, TSIULYANU D, KULISCH W, et al. eds. Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series - A: Chemistry and Biology. The Netherlands: Springer, 2015: 65–71.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com