[1]CHENG Q, PAVLINEK V, HE Y, et al. Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres[J]. Colloid Polym Sci, 2011, 289: 799–805.
[2]GEORGE G, CHASE Patanee Dachavijit. An experimental study of electrorheological fluid flow through a packed bed of glass beads[J]. Transp Porous Med, 2008, 72: 25–35.
[3]HIAMTUP P, SIRIVAT A, JAMIESON A M. Electrorheological properties of polyaniline suspensions: Field-induced liquid to solid transition and residual gel structure[J]. J Colloid Interface Sci, 2006, 295: 270–278.
[4]YIN J B, ZHAO X P, XIANG L, et al. Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles[J]. Soft Matter, 2009, 5: 4687–4697.
[5]WANG J E, SEVERTSON S J, STEIN A. Significant and concurrent enhancement of stiffness, strength, and toughness for paraffin wax through organoclay addition[J]. Adv Mater, 2006, 18: 1585–1588.
[6]BAFNA A, BEAUCAGE G, MIRABELLA F, et al. Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems[J]. Polymer, 2003, 44: 1103–1108.
[7]JIANG J, TIAN Y, MENG Y. Structure parameter of electrorheological fluids in shear flow[J]. Langmuir, 2011, 27: 5814–5823.
[8]WERELEY N M. Nondimensional Herschel–Bulkley analysis of magnetorheological and electrorheological dampers[J]. J Intell Mater Syst Struct, 2008, 19: 257–268.
[9]ZHU C S. Nondimensional analysis of annular duct flow in magnetorheological/elecrorheological dampers[J]. Int J Mod Phys B, 2005, 19: 1577–1583.
[10]TIAN Y, MENG Y, WEN S. Particulate volume effect in suspensions with strong electrorheological response[J]. Mater Lett, 2003, 57: 2807–2811.
[11]BROOKS D A. Selection of commercial electro-rheological devices[C]//Tao R, Roy G D, eds. Proceeding of the 4th International Conference on Electro-rheological Fluids. Singapore: World Scientific, 1994: 643–656.
[12]HAO T. Electrorheological suspensions[J]. Adv Colloid Interface Sci, 2000, 97: 1–35.
[13]HAVELKA K O, PIALET J W. Electrorheological technology: The future is now[J]. Chemtech, 1996, 26: 36–45.
[14]ANDERSON R A. Electrostatic forces in an ideal spherical-particle electrorheological fluid[J]. Langmuir, 1994, 10: 2917–2928.
[15]WINSLOW W M. Induced fibration of suspensions[J]. J Appl Phys, 1949, 20: 1137–1140.
[16]KLASS D L, MARTINEK T W. Electro-viscous fluids Ⅰ. Rheological properties[J]. J Appl Phys, 1967, 38: 67–74.
[17]KLASS D L, MARTINEK T W. Electro-viscous fluids Ⅱ. Rheological properties[J]. J Appl Phys, 1967, 38: 75–80.
[18]STANGROOM J E. Electrorheological fluid[J]. Phys Technol, 1983, 14: 290–296.
[19]BOISSY C, ATTEN P, FOULC J N. The conduction model of the electrorheological effect revisited[J]. J Intell Mater Syst Struct, 1996, 7: 599–603.
[20]DAVIS L C. Polarization forces and conductivity effects in electrorheological fluids[J]. J Appl Phys, 1992, 72: 1334–1340.
[21]FELICI N J, FOULC J N, ATTEN P. A conduction model of electrorheological effects[C]//TAO R, ROY G D eds. Proceeding of the 4th International Conference on Electro-rheological Fluids. Singapore: World Scientific, 1994: 139–152.
[22]HAO T, KAWAI A, IKAZAKI F. The yield stress equation for the electrorheological fluids[J]. Langmuir, 2000, 16: 3058–3066.
[23]DEINEGA Y F, VINOGRADOV G V. Electric fields in the rheology of disperse system[J]. Rheol Acta, 1984, 23: 636–651.
[24]OSTUBO Y, EDAMURA K. Electrorheology of dilute suspensions induced by hydrodynamic instability[J]. J Non-Newton Fluid Mech,1997, 71: 183–195.
[25]BLOCK H, KELLY J P. Electrorheology[J]. J Phys D, 1988, 21: 1661–1677.
[26]YIN J B, ZHAO X P. Electrorheological fluids bases on glycerol-activated titania gel particles and silicone oil with high yield strength[J]. J Colloid Interface Sci, 2003, 257: 228–236.
[27]GAST A P, ZUKOSKI C F. Electrorheological fluids as colloidal suspensions[J]. Adv Colloid Interface Sci, 1989, 30: 153–202.
[28]JORDAN T C, SHAW M T. Electrorheology[J]. IEEE Trans Electr Insul, 1989, 24: 849–878.
[29]KIM Y D, KLINGENBERG D J. Two roles of non-ionic surfactants on the electro-rheological response[J]. J Colloid Interface Sci, 1996, 183: 568–578.
[30]FILISCO F E, ARMSYRONG W F. Electric field dependent fluids. US Patent, 4744914. 1988, 5–17.
[31]BÖSE H. MR suspensions and their applications[C]//NAKANO M, KOYAMA K, eds. Proceeding of the 6th Int. Conf. on ERF, Singapore: World Scientific, 1998: 240.
[32]ZHANG W L. Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology[J]. Colloid Polym Sci, 2012, 290: 1743–1748.
[33]HYUN S C. Synthesized palygorskite/polyaniline nanocomposite particles by oxidative polymerization and their electrorheology[J]. Appl Clay Sci, 2015, 107: 165–172.
[34]LUO H M. Preparation of lactose-based attapulgite template carbon materials and their electrochemical performance[J]. J Solid State Electrochem, 2015, 19: 1171–1180.
[35]ZHAO X, LUO H, DU K, et al. Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors[J]. J Appl Electrochem, 2014, 44: 719–725.
[36]MA X J, LIU L H. Preparation and properties of modified attapulgite/polyurethane bioactive macromolecular carrier[J]. Res Chem Intermed, 2012, 38: 223–232.
[37]VERONIKA Vágvölgyi, LISA M, DANIEL. Dynamic and controlled rate thermal analysis of attapulgite[J]. Therm Anal Calorim, 2008, 2: 589–594.
[38]CHEN Zhongshan, HE Jietao. Sorption and desorption properties of Eu(III) on attapulgite[J]. J Radioanal Nucl Chem, 2015, DOI: 10.1007/s10967-015-4252-9.
[39]WANG L H, SHENG J. Preparation and properties of polypropylene/org-attapulgite nanocomposites[J]. J Polym, 2005, 46: 6243–6249.
[40]LIU P. Hyperbranched aliphatic polyester grafted attapulgite via a melt polycondensation process[J]. J Appl Clay Sci, 2007, 35: 11–16.
[41]NEAMAN A, SINGER A. Possible use of the Sacalum (Yucatan) palygorskite as drilling muds[J]. J Appl Clay Sci, 2004, 25: 121–124.
[42]LIU Y D, FANG F F, CHOI H J. Silica nanoparticle decorated conducting polyaniline fibers and their electrorheology[J]. Mater Lett, 2010, 64: 154–156.
[43]JIN J B, XIA X, XIANG L Q, et al. Temperature effect of electrorheological fluid based on polyaniline derived carbonaceous nanotubes[J]. Smart Mater, 2011, 20: 1–8.
[44]PETRZHIK G G, CHERTKOVA O A, TRAPEZNIKOV A A, et al. Electrorheological Effect in Nonaqueous Dispersions of Various Compositions in Relation to the Electric Field Parameters. Dokl. Akad. Nauk SSSR. 1980, 253: 173–178.
[45]TRAPEZNIKOV A A, PETRZHIK G G., CHERTKOVA O A. Electrorheological Properties of Nonaqueous Dispersions of Titanium Dioxide and Silicone Dioxide in Relation to Concentration and Moisture Content of Filler, Kolloidn Zh, 1981, 43: 1134–1139.
[46]CHERTKOVA O A, PETRZHIK G G, TRAPEZNIKOV A A. Influence of Nature of Surfactant on the Electrorheological Effect in Nonaqueous Dispersions. Kolloidn Zh, 1982, 44: 83–87.
[47]YIN J B, ZHAO X P. Electrorheology of nanofiber suspensions [J]. Nanoscale Res Lett, 2011, 6: 256–272.
[48]HAO T. Electrorheological fluids[J]. Adv Mater, 2001, 13(24): 1847–1857.
[49]KIM M J, LIU Y D, CHOI H J. Urchin-like polyaniline microspheres fabricated from self-assembly of polyaniline nanowires and their electro-responsive characteristics[J]. Chem Eng J, 2014, 235: 186–190.
[50]KLINGERBERG D J, FRANK Van S, ZUKOSKI C F. The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit[J]. J Chem Phys, 1991, 94: 6161–6170.
[51]DAVIS L C. Ground state of an electrorheological fluid[J]. Phys Rev A, 1992, 46: 719–723.
[52]Jin H J, Choi H J,Yoon S H, et al. carbon nanotube-adsorbed polystyrene and poly(methyl methacrylate) microspheres[J]. Chem Mater, 2005, 17: 4034–4037.
[53]KIM Y D, KIM J H. Synthesis of polypyrrole-polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions[J]. Colloid Polym Sci, 2008, 286: 631–637.
[54]MANUEL J E, ANGEL V D, JANUS Z P. Effect of additives and measurement procedure on the electrorheology of hematite/silicone oil suspensions[J]. Rheological Acta, 2006, 45: 865–876.
[55]WEI C G. Electrorheological Technology—Mechanism MAterials Engineering Application[M]. Beijing: Beijing Institute Press, 2000.
[56]LIN Y M, LEI X P, SONG X F, et al. Conductivity and dielectric properties of polyaniline@fly-ash floating beads composite[J]. Acta Mater Compos Sin (in Chinese), 2015, 32(4): 948–954.
[57]LEI X P, HAN D, WANG Y, et al. Preparation and electrorheological properties of polyaniline @ quaternary ammonium cations modified fly ash floating bead[J]. Mater Compos Sin (in Chinese), DOI: 10.13801/j.cnki.fhclxb.20151117.001.(in Chinese)
[58]DÜRRSCHMIDT T, HOFFMANN H. Electrorheological effects in suspensions of hydrophobically modified saponite[J]. Colloids Surf A: Physicochem Eng Aspects, 1999, 156: 257–269.
[59]MURRAY H H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Appl Clay Sci, 2000, 17: 207–221.
[60]DONG Q N. Infrared Spectroscopy[M] (in Chinese). Beijing: Petroleum Chemical Industry Press, 1977.
[61]WANG A Q, WANG W B, ZHENG Y A, et al. Dissociation of Attapulgite Crystal Beam and Its Functional nano Composites[M] (in Chinese). Beijing: Science Press, 2014.
[62]LEI X P, LIU Y S, SU Z X. Study on synthesis and characterization of organo-attapulgite/polyaniline-DBSA based on emulsion polymerization method[J]. Polym Compos, 2008, 29: 239–244.
|