首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
RuO2负载TiO2纳米管的制备及其光催化性能
作者:王竹梅 朱晓玲 李月明 沈宗洋 
单位:景德镇陶瓷大学材料科学与工程学院 江西省先进陶瓷材料重点实验室 江西 景德镇 333403 
关键词:二氧化钛纳米管阵列 氧化钌负载 电解 可见光 光催化活性 
分类号:O643.36
出版年,卷(期):页码:2016,44(10):1494-1500
DOI:10.14062/j.issn.0454-5648.2016.10.17
摘要:

结合阳极氧化法、电解法和浸渍法制备了RuO2/TiO2纳米管阵列光催化剂。对纳米管的微观形貌、结构以及表面化学态进行了分析;通过紫外–可见吸收光谱仪分析了浸渍液中钌离子电解前后的变化情况,检测了RuO2/TiO2纳米管阵列在可见光下对亚甲基蓝溶液的光催化性能。结果表明:当电解电压为0.85 V时,浸渍液中Ru离子以+2价形式存在;只有当浸渍液中的Ru3+还原为Ru2+后,才能负载到TiO2纳米管表面,且煅烧后以RuO2形式均匀分散在TiO2纳米管表面;RuO2/TiO2纳米管仍保持未负载TiO2纳米管的结构特征,且其晶型结构并没有因RuO2的负载而变化,也未增加TiO2纳米管表面羟基数量。最佳浸渍RuCl3溶液浓度为3.0 mmol/L,最佳电解电压为0.85 V,在此条件下浸渍得到的RuO2/TiO2纳米管阵列的可见光催化活性最佳,光催化降解亚甲基蓝2 h的降解率由未负载TiO2纳米管的37.50%提高到66.67%。
 

RuO2 loaded TiO2 nanotube arrays photocatalyst was fabricated via anodic oxidation, electrolytic method and impregnation method. The morphology, structure and surface chemical states of the nanotubes were analyzed. The change of ruthenium ion in the impregnation solution before and after electrolysis was analyzed by UV–Vis absorption spectroscopy. The photocatalytic properties of RuO2/TiO2 nanotube arrays to methylene blue solution were investigated under visible light irradiation. The results indicate that Ru ion in the impregnating solution exists in +2 valence state at an applying voltage of 0.85 V. Ru element can be only loaded onto the TiO2 nanotubes surface when the Ru3+ is reduced to Ru2+ in the impregnation solution, and then formed RuO2 after calcination. RuO2/TiO2 nanotubes are still remained the same structural characteristics as unloaded TiO2 nanotubes, and the crystal structure is not changed after RuO2 loading. The loading of RuO2 cannot cause the increase of the hydroxyl number on the surface of TiO2 nanotubes. The RuO2/TiO2 nanotube arrays with the optimum photocatalytic activity were fabricated in the ruthenium chloride solution with a concentration of 3.0 mmol/L at an electrolytic voltage of 0.85 V. The 2 h visible-light photocatalytic degradation rate of methylene blue increases from 37.50% for pure TiO2 nanotubes to 66.67% for RuO2/TiO2 nanotube arrays.
 

基金项目:
国家自然科学基金(51462010);江西省自然科学基金(20114BAB203021)项目。
作者简介:
王竹梅(1971—),女,副教授。
参考文献:

[1] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69–96.
[2] DEKRAFFT K E, WANG C, LIN W. Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production[J]. Adv Mater, 2012, 24: 2014–2018.
[3] SHRESTHA N K, YANG M, NAH Y C, et al. Self-organized TiO2 nanotubes: Visiblelight activation by Ni oxide nanoparticle decoration[J]. Electrochem Commun, 2010, 12: 254–257.
[4] ZHANG Y G, MA L L, LI J L, et al. In situ Fenton reagent generated from TiO2/Cu2O composite film: A new way to utilize TiO2 under visible light irradiation[J]. Environ Sci Technol, 2007, 41: 6264–6269.
[5] KANG S H, KIM J Y, KIM Y, et al. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells[J]. J Phys Chem C, 2007, 111: 9614–9623.
[6] WETCHAKUN K, PHANICHPHANT S. Effect of Ru on photocatalytic activity of TiO2 nanoparticles[J]. J Microsc Soc Thai, 2008, 22: 11–14.
[7] HOUŠKOVÁ V, ŠTENGL V, BAKARDJIEVA S, et al. Efficient gas phase photodecomposition of acetone by Ru-doped Titania[J]. Appl Catal B: Environ, 2009, 89(3): 613–619.
[8] 焦斌权, 徐朝鹏, 孙晓君, 等. 钌掺杂二氧化钛纳米粉体的制备及光催化性能[J]. 硅酸盐学报, 2011, 39(5): 743–747.
JIAO Binquan, XU Chaopeng, SUN Xiaojun, et al. J Chin Ceram Soc, 2011, 39(5): 743–747.
[9] 姚秉华, 王理明, 余晓皎, 等. RuO2/TiO2复合光催化剂的制备及性能研究[J]. 光谱学与光谱分析, 2005, 25(6): 934–937.
YAO Binghua, WANG Liming, YU Xiaojiao, et al. Spectrosc Spectra Anal (in Chinese), 2005, 25(6): 934–937.
[10] UDDIN M T, BABOT O, THOMAS L, et al. New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition[J]. J Phys Chem C, 2015, 119(13): 7006–7015.
[11] GOPIRAMAN M, BABU S G, KHATRI Z, et al. Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use as a catalyst in the aerial oxidation of primary alcohols(GNS=graphene nanosheets)[J]. React Kinet Mech Catal, 2015, 115(2): 759–772.
[12] 刘晟初. 高酸环境中钯的电化学行为研究[D]. 上海: 上海交通大学, 2013.
LIU Shengchu. Study on electrochemical properties of palladium in high acid midia (in Chinese, dissertation),Shanghai: Shanghai Jiaotong University, 2013.
[13] RUMYANTSEVA M N, SAFONOVA O V, BOULOVA M N, et al. Dopants in nanocrystalline tin dioxide[J]. Russ Chem B, 2003, 52(6): 1217–1238.
[14] YANG F, KUNDU S, VIDAL A B, et al. Determining the behavior of RuOx nanoparticles in mixed-metal oxides :structural and catalytic properties of RuO2/TiO2(110) surfaces[J]. Angew Chem Int Ed, 2011, 20: 10198–10202.
[15] DUPIN J C, GONBEAU D, VINATIER P, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides[J]. Phys Chem Chem Phys, 2000, 2(6): 1319–1324.
[16] SILVERSMIT G, DE DONCKER G, DE GRYSE R. A mineral TiO2 (001) anatase crystal examined by XPS[J]. Surf Sci Spectra, 2002, 9(1): 21–29.
[17] LIU Z, GUO B, HONG L, et al. Preparation and characterization of cerium oxide doped TiO2 nanoparticles[J]. J Phys Chem Solids, 2005, 66(1): 161–167.
[18] REDDY D A, MA R, KIM T K. Efficient photocatalytic degradation of methylene blue by heterostructured ZnO–RGO/RuO2 nanocomposite under the simulated sunlight irradiation[J]. Ceram Int, 2015, 41(5): 6999–7009.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com