首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Al–Z–SBA–15复合分子筛的制备及催化性能
作者:孙尧 詹金友 张璐璐 沈健 李剑 
单位:辽宁石油化工大学石化学院 辽宁 抚顺 113001 
关键词:Al–Z–SBA–15 介孔分子筛 制备条件 有序度 催化活性 
分类号:TQ426
出版年,卷(期):页码:2016,44(10):1515-1521
DOI:10.14062/j.issn.0454-5648.2016.10.20
摘要:

采用直接合成法制备Al–Z–SBA–15复合分子筛,以丙烯酸酯化反应为探针,X射线衍射表征为手段,考察ZSM–5的硅铝比、降解时间、硝酸铝引入量、晶化温度、晶化时间对复合分子筛的结构和酸性的影响。利用X射线衍射、Fourier变换红外光谱、N2吸附–脱附和吡啶红外光谱对Al–Z–SBA–15的理化性质进行了表征分析。结果表明:当ZSM–5中的Si/Al摩尔比为80、降解时间为24 h、正硅酸乙酯与硝酸铝的摩尔比为35、晶化温度为120 ℃、晶化时间为48 h时,Al–Z–SBA–15有序度最高,酸性最强;沸石结构单元以五元环的形式存在于骨架中,增加了孔壁厚度,大部分Al取代硅以稳定的骨架铝的形式嵌入到孔壁中,提高了孔壁的结晶度。与Z–SBA–15相比,Al–Z–SBA–15催化活性和水热稳定性显著提高。
 

Composite molecular sieves Al–Z–SBA–15 were synthesized by a direct synthesis method. The influences of mass ratio of ZSM–5, relative amount of aluminum nitrate, time of zeolite–dissolving, crystallization temperature and crystallization time on the synthesis of composite molecular sieves were investigated. The samples were characterized by X–ray diffraction, Fourier transform infrared spectroscopy(FTIR, N2 adsorption–desorption analysis and pyridine–adsorbed FTIR, respectively. The results show that the composite molecular sieves Al–Z–SBA–15 prepared under the optimum condition (i.e., silica alumina ratio in ZSM-5 of 80, zeolite–dissolving
time of 24 h, relative amount of aluminum nitrate () of 35, reaction temperature of 120 ℃ and reaction time of 48 h)
have better performance of order degree and acidity. The fivefold ring structural unit of zeolite existing in the framework increases the pore wall thickness of the molecular sieve, and most of the aluminum atoms are incorporated into the framework of Al–Z–SBA–15. Compared to Z–SBA–15, the catalytic activity and hydrothermal stability of Al–Z–SBA–15 are significantly improved.
 

基金项目:
作者简介:
孙 尧(1990—),女,硕士研究生。
参考文献:

[1]吴茂祥, 罗军华, 李定, 等. 杂多酸(盐)催化合成丙烯酸正丁酯的研究[J]. 精细化工, 1999, 16(6): 32–34.
WU Maoxiang, LUO Junjie, LI Ding, et al. Fine Chem (in Chinese), 1999, 16(6): 32–34.
[2]邢凤兰, 范瑞清, 马立群, 等. 微孔多金属氧酸H3PW12O40/SiO2催化合成丙烯酸正丁酯[J]. 分子科学学报, 2003, 19(1): 57–60
XING Fenglan, FAN Ruiqing, MA liqun, et al. J Mol Sci (in Chinese), 2003, 19(1): 57–60.
[3]姜亚洁, 阮运进, 李想, 等. 疏水性固体酸H3PW12O40/HZSM–5催化合成丙烯酸正丁酯[J]. 北京化工大学学报, 2007, 34(3): 258–262.
JIANG Yajie, RUAN Junjin, LI Xiang, et al. J Beijing Univ Chem Technol:Nat Sci Ed (in Chinese), 2007, 34(3): 258–262.
[4]DI Y, YU Y, SUN Y, et al. Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors[J]. Micropor Mesopor Mater, 2003, 62(3): 221–228.
[5]吴硕. 高水热稳定的介孔杂原子分子筛的合成与表征[D]. 长春: 吉林大学, 2004.
WU Shuo. Synthesis and characterization of hydrothermally stable heteroatoms substituted mesoporous molecules (dissatation, in Chinese). Changchun: Jilin University, 2004.
[6]HAN Y, WU S, SUN Y Yg, et al. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media[J]. Chem Mater, 2002, 14: 1144–1148.
[7]吴淑杰, 黄家辉, 吴通好, 等. Al–SBA–15介孔分子筛的合成、表征及其在苯酚叔丁基化反应中的催化性能[J]. 催化学报, 2006, (01): 9–14.
WU Shujie, HUANG Jiahui, WU Tonghao, et al. Chin J Catal (in Chinese), 2006, (01): 9–14.
[8]李猛, 傅吉全. 用ZSM–5降解液进行SBA–15分子筛合成的研究[J]. 北京化工大学学报: 自然科学版, 2010, 37: 88–93.
LI Meng, FU Jiquan. J Beijing Univ Chem Technol: Nat Sci Ed (in Chinese), 2010, 37: 88–93.
[9]ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548–552.
[10]张瑛, 窦涛, 李玉平, 等. 沸石降解法合成孔壁含有沸石结构单元的介孔结构材料[J]. 无机材料学报, 2005, 20(6): 1423–1430.
ZHANG Ying, DOU Tao, LI Yuping, et al. J Inorg Mater (in Chinese), 2005, 20(6): 1423–1430.
[11]LAUNAY F, HABIB S, SPRINGUEL–HUET M A, et al. Investigation of the zeolitic nature of the microporosity inside the materials obtained from the hydrothermal treatment of Al–SBA–15 in the Presence of the ZSM–5 template[C]//International Zeolite Conference. 2007: 818–824.
[12]Lechert H, Kacirek H. Investigations on the crystallization of X–type zeolites[J]. Zeolites, 1991, 11(7): 720–728.
[13]Dessau R M, Valyocsik E W, Goeke N H. Aluminum zoning in ZSM–5 as revealed by selective silica removal[J]. Zeolites, 1992, 12(7): 776–779.
[14]魏兵, 沈志虹, 张昌松,等. 前驱体组装高水热稳定性介孔分子筛MSU–S[J]. 分子催化, 2009, 23: 233–236.
WEI Bing, SHEN Zhihong, ZHANG Changhong, et al. J Mol Catal (in Cinese), 2009, 23: 233–236.
[15]高闯, 韩果, 孙晓艳,等. 硅铝摩尔比对Al–SBA–15介孔分子筛结构和性质的影响[J]. 石油化工, 2015, 44(3): 314–318.
GAO Chuang, HAN Guo, SUN Xiaoyan, et al. Petrochem Technol (in Chinese), 2015, 44(3): 314–318.
[16]宋科. 强化介孔分子筛酸中心及水热稳定性的研究[D]. 长春:吉林大学, 2009.
SONG Ke. Study on Improve Acid Sites and Hydrothermal Stability of Mesoporous Molecular Sieves (dissertation, in Chinese). Changchun: Jilin University, 2009.
[17]袁金芳, 李健生, 申战辉, 等. Zr–Ce–SBA–15介孔材料的合成和形貌调控[J]. 稀有金属材料与工程, 2011, 40: 473–478.
YUAN Jinfang, LI Jiansheng, SHEN Zhanhui, et al. Rare Metal Mater Eng (in Chinese), 2011, 40: 473–478.
[18]ZHANG Y, GAO F, WAN H, et al. Synthesis, characterization of bimetallic Ce–Fe–SBA–15 and its catalytic performance in the phenol hydroxylation[J]. Micropor Mesopor Mater, 2008, 113: 393–401.
[19]谢焕玲, 徐文国, 王丹. Co3O4/SBA–15和Co3O4–CeO2/SBA–15复合材料的直接法合成与表征[J]. 北京理工大学学报, 2007, 27(3): 274–276.
XIE Huanling, XU Wenguo, WANG Dan. J Beijing Inst Technol (in Chinese), 2007, 27(3): 274–276.
[20]袁金芳, 李健生, 顾娟,等. 氨基功能化短孔道有序介孔材料H2N–Zr–Ce–SBA–15的合成及吸附性能[J]. 物理化学学报, 2010, 26: 1711–1716.
YUAN Jinfang, LI Jiansheng, GU Juan, et al. Acta Phys Chim Sin (in Chinese), 2010, 26: 1711–1716.
[21]洪新,唐克. 杂原子介孔Co–MCM–41分子筛的制备及其吸附脱氮性能[J]. 燃料化学学报. 2015, 43(6): 720–727.
HONG Xin, TANG Ke. J Fuel Chem Technol (in Chinese), 2015, 43(6): 720–727.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com