首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
(Ba1–xCax)(Ti0.94Zr0.056Sn0.004)O3无铅压电陶瓷电学性能和Curie温度的协同调控
作者:汪宁 张波萍 赵磊 马剑 郑乾方 
单位:北京市新能源材料与技术重点实验室 北京科技大学材料科学与工程学院 北京 100083 
关键词:钛酸钡 无铅压电陶瓷 相结构 压电性能 
分类号:TM282
出版年,卷(期):页码:2016,44(12):0-0
DOI:10.14062/j.issn.0454-5648.2016.12.02
摘要:

在A位和B位同时分别加入Ca2+、Zr4+和Sn4+,采用传统的固相烧结法在1 480 ℃烧结4 h制备了(Ba1–xCax)(Ti0.94Zr0.056Sn0.004)O3(BCxTZS)压电陶瓷。研究了Ca2+含量x对BCxTZS陶瓷微观形貌、相结构和电学性能的影响。结果表明:少量Ca2+有利于晶粒长大,x=0.05的样品具有最大的晶粒尺寸12.88 μm,Ca2+、Zr4+和Sn4+全部固溶到BaTiO3晶格中形成单一固溶体。当0.00≤x≤0.03时,BCxTZS陶瓷的室温相结构为正交相(O)–四方相(T)两相共存;x=0.05时,O–菱方相(R)–T三相共存;x=0.07时,O相消失,R–T两相共存。所有样品具有较高的Curie温度(TC>104 ℃)和良好的电学性能(d33=325 pC/N、kp=34%、Qm=151),实现了电学性能和Curie温度的协同调控。
 

(Ba,Ca)(Ti,Zr)O3 and (Ba,Ca)(Ti,Sn)O3 lead-free piezoelectric ceramics have attracted much attention due to their superior piezoelectric properties. In this paper, Ca2+, Zr4+ and Sn4+ were simultaneously doped at A-sites and B-sites, respectively. (Ba1–xCax)(Ti0.94Zr0.056Sn0.004)O3(BCxTZS) lead-free piezoelectric ceramics were fabricated by conventional solid-state sintering at 1 480 ℃ for 4 h. The effect of Ca2+ content (x) on the microstructure, phase structure and electrical properties were investigated. The results show that a small amount of Ca2+ is conducive to the grain growth, in which a greater grain size of 12.88 μm is attained as x=0.05. Ca2+, Sn4+ and Zr4+ ions completely diffuse into the BaTiO3 lattice to form a single solid solution. The phase structure is orthorhombic (O) –tetragonal (T) coexisted structure as 0.00≤x≤0.03, O–rhombohedral(R) –T multiphase coexisted structure as x=0.05, and R–T coexisted structure as x=0.07, respectively. All the samples possess a high Curie temperature (i.e., TC>104 ℃), along with the better piezoelectric properties (i.e., d33=325 pC/N, kp=34%, Qm=151) as x=0.05, improving the electrical properties and the Curie temperature.
 

基金项目:
国家自然科学基金(51472026);高等学校博士学科点专项基金(20130006110006)。
作者简介:
汪 宁(1992—),女,硕士研究生。
参考文献:

[1]BECHMANN R, Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations[J]. J Acoust Soc Am, 1956, 28(3): 347–50.
[2]LI J F, WANG K, ZHU F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. J Am Ceram Soc, 2013, 96(12): 3677–3696.
[3]XIAO D Q, WU J G, WU L, et al. Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics[J]. J Mater Sci, 2009, 44(19): 5408–5419.
[4]RODEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J Am Ceram Soc, 2009, 92(6): 1153–1177.
[5]PANDA P K, Review: environmental friendly lead-free piezoelectric materials[J]. J Mater Sci, 2009, 44(19): 5049–5062.
[6]LI W, XU Z J, CHU R Q, et al. Large piezoelectric coefficient in (Ba1–xCax)(Ti0.96Sn0.04)O3 lead-free ceramics[J]. J Am Ceram Soc, 2011, 94(12): 4131–4133.
[7]LI W, XU Z J, CHU R Q, et al. Enhanced ferroelectric properties in (Ba1–xCax)(Ti0.94Sn0.06)O3 lead-free ceramics[J]. J Eur Ceram Soc, 2012, 32(3): 517–520.
[8]CHEN M L, XU Z J, CHU R Q, et al. Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1)(Ti1–xSnx)O3 lead-free ceramics[J]. Mater Lett, 2013, 97: 86–89.
[9]ZHU L F, ZHANG B P, ZHAO X K, et al. Enhanced piezoelectric properties of (Ba1–xCax)(Ti0.92Sn0.08)O3 lead-free ceramics[J]. J Am Ceram Soc, 2013, 96(1): 241–245.
[10]SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84–87.
[11]ZHANG S J, XIA R, SHROUT T R, et al. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics[J]. J Appl Phys, 2006, 100(10): 104108.
[12]LI Y, JIANG N, LAM K H, et al. Structure, ferroelectric, piezoelectric, and ferromagnetic properties of BiFeO3–BaTiO3–Bi0.5Na0.5TiO3 lead-free multiferroic ceramics[J]. J Am Ceram Soc, 2014, 97(11): 3602–3608.
[13]ZHU L F, ZHANG B P, ZHAO L, et al. Large piezoelectric effect of (Ba,Ca)TiO3–xBa(Sn,Ti)O3 Lead-free ceramics[J]. J Eur Ceram Soc, 2016, 36(4): 1017–1024.
[14]LIU W F, REN X B, Large piezoelectric effect in Pb-free ceramics[J]. Phys Rev Lett, 2009, 103(25): 257602.
[15]施涛.钙钛矿型铁电体材料成分设计思路及电子显微学研究[D]. 北京: 清华大学, 2016.
SHI T. Design strategy and electron microscopy investigation for perovskite type ferroelectric oxide (in Chinese, dissertation). Beijing: Tsinghua University, 2016.
[16]BAO H X, ZHOU C, XUE D Z, et al. A modified lead-free piezoelectric BZT–xBCT system with higher TC[J]. J Phys D Appl Phys, 2010, 43: 4465401.
[17]YU Y Q, ZHANG B P, Ge Z H, et al. Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering[J]. Mater Chem Phys, 2011, 131(1/2): 216–222.
[18]WANG H, WU J G, Phase transition, microstructure, and electrical properties of Ca, Zr, and Sn-modified BaTiO3 lead-free ceramics[J]. J Alloy Compd, 2014, 615: 969–974.
[19]MITSUI T, WESTPHAL W B, Dielectric and X-ray studies of CaxBa1–xTiO3 and CaxSr1–xTiO3[J]. Phys Rev, 1961, 124(5): 1354–1359.
[20]TANG X G, CHAN H L W, Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics[J]. J Appl Phy, 2005, 97(3): 034109.
[21]CHANDRAKALA E, PRAVEENA J P, HAZRA B K, et al. Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol–gel derived BZT–BCT ceramics[J]. Ceram Inter, 2016, 42(4): 4964–4977.
[22]YU Z, ANG C, GUO R Y, BHALLA A S, et al. Piezoelectric and strain properties of Ba(Ti1–xZrx)O3ceramics[J]. J Appl Phys, 2002, 92(3): 1489–1493.
[23]KALYANI A K, BRAJESH K, SENYSHYN A, et al. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3[J]. App Phys Lett, 2014, 104(25): 252906.
[24]ZHAO L, ZHANG B P, ZHOU P F, et al. Phase structure and property evaluation of (Ba,Ca)(Ti,Sn)O3 sintered with Li2CO3 addition at low temperature[J]. J Am Ceram Soc, 2014, 97(7): 2164–2169.
[25]FARHI R, MARSSI E M, SIMON A, A raman and dielectric study of ferroelectric Ba(Ti1–xZrx)O3 ceramics[J]. Eur Phys J B, 1999, 9(4): 599–604.
[26]HENNINGS D, SCHNELL A, SIMON G, Diffuse ferroelectric phase transitions in Ba(Ti1–yZry)O3 ceramics[J]. J Am Ceram Soc, 1982, 65(11): 539–544.
[27]HORCHIDAN N, IANCULESCU A C, CURECHERIU L P, et al. Preparation and characterization of barium titanate stannate solid solutions[J]. J Alloy Compd, 2011, 509(14): 4731–4737.
[28]WEI X, YAO X, Preparation, structure and dielectric property of barium stannate titanate ceramics[J]. Mater Sci Eng B, 2007, 137(1/3): 184–188.
[29]ZHANG S W, ZHAO H L, ZHANG B P, et al. Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere[J]. J Eur Ceram Soc, 2009, 29(15): 3235–3242.
[30]YOON K H, LEE B D, PARK J, et al. Dielectric and piezoelectric properties of (x)Pb(Mg1/3Nb2/3)O3–(1–x)Pb(Zr1/2Ti1/2)O3 thin films prepared by the sol-gel method[J]. J Appl Phys, 2001, 90(4): 1968–1972.
[31]HAO J G, BAI W F, LI W, et al. Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics[J]. J Am Ceram Soc, 2012, 95(6): 1998–2006.
[32]FU H X, COHEN R E, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics[J]. Nature, 2000, 403(6767): 281–283.
[33]HAUN M J, FURMAN E, JANG S J, et al. Thermodynamic theory of the lead zirconate-titanate solid solution system, Part I: phenomenology[J]. Ferroelectrics, 1989, 99(1): 13–25.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com