首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
烧结助剂对堇青石–莫来石复相陶瓷的致密化和烧结特性的影响
作者:徐晓虹 张银凤 吴建锋 胡成 陆成龙 王东斌 
单位:武汉理工大学硅酸盐建筑材料国家重点实验室 武汉 430070 
关键词:堇青石–莫来石复相陶瓷 烧结助剂 致密化 烧结特性 氧化硼 液相烧结 FactSage 
分类号:TB321
出版年,卷(期):页码:2016,44(12):0-0
DOI:10.14062/j.issn.0454-5648.2016.12.12
摘要:

以高岭土、滑石、工业氧化铝为原料,加入不同含量的B2O3、Nd2O3、Y2O3烧结助剂,通过原位反应烧结法合成了堇青石–莫来石复相陶瓷,研究了烧结助剂对其致密度和烧结特性的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)表征试样的晶相组成和微观结构。利用FactSage 6.0软件对系统的相组成和液含率进行了模拟对比分析。结果表明:B2O3具有最好的助烧结性。添加2.0% B2O3的复相陶瓷样品的烧结温度降低,致密度和机械强度提高,其经1 420 ℃烧成后吸水率和抗折强度分别为0.03%和116.70 MPa。经XRD分析和FactSage模拟证实,由于B2O3的液相烧结作用,物质间的固相扩散转变为液相扩散,促进了样品中四方堇青石的生成(未添加B2O3样品相组成为六方堇青石)。SEM和EDS结果表明,2.0% B2O3促进了晶体的生长与发育,四方柱状或块状堇青石与针棒状莫来石相互交织穿插排列,赋予样品较高的致密度和强度。
 

Cordierite–mullite composites as potential supporting materials used at high temperatures were prepared by an in situ reaction sintering method with Kaolin clay, Talc and alumina as raw materials. To obtain dense composite ceramics, four batches of the blank sample, the B2O3-added, Nd2O3-added, and Y2O3-added samples were taken into consideration. The effect of sintering aid additives on the densification and sintering behavior and the morphology of the composite samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). A software named FactSage was used to calculate the phase composition and liquid content. The experimental results show that the samples with 2.0% B2O3 (sintered at 1 420 ℃) exhibit the dentist microstructure (with an water absorption of 0.07%) and the maximum mechanical strength (with a bending strength (σ) of 116.70 MPa), compared to the other three samples. The XRD analysis proves that the addition of B2O3 promotes the crystallization and growth of orthorhombic-cordierite instead of hexagonal-cordierite, which is a time–temperature-transformation (TTT) behavior. These results are consistent with the results calculated by FactSage. Based on the SEM and EDS analysis, the tetragonal–prismatic or lumpy cordierite grains and needle-shaped mullite grains were formed in irregular rows, resulting in the improved densification and mechanical strength of the sample with 2.0% B2O3.
 

基金项目:
国家“973”计划(2010CB227105)资助。
作者简介:
徐晓虹(1963—),女,博士,教授。
参考文献:

[1] TAUTA S, HAYASHI T, KITAJIMA K. Preparation of machinable cordierite/mica composite by low-temperature sintering[J]. J Eur Ceram Soc, 2004, 24(10): 3149–3154.
[2] CAMERUCCI M A, URRETAVIZCAYA G, CAVALIERI A L. Sintering of cordierite based materials[J]. Ceram Int, 2003, 29(2): 159–168.
[3] AWANO M, TAKAGI H, KUWAHARA Y. Grinding effects on the synthesis and sintering of cordierite[J]. J Am Ceram Soc, 1992, 75(9): 2535–2540.
[4] SANAD M, RASHAD M M, ABDEL–AAL E S A, et al. Extending and enhancing the properties of porous cordierite ceramics by Mo6+ ion incorporation via facile combined synthesis technique[J]. Int J Appl Ceram Technol, 2014, 11(5): 864–871.
[5] SHI Z, BAI X, Wang X. Ce4+-modified cordierite ceramics [J]. Ceram Int, 2006, 32: 723–726.
[6] HAMZAWY E M A, ALI A F. Sol–gel preparation of boron-containing cordierite Mg2(Al4–xBx)Si5O18 and its crystallization [J]. Mater Charact, 2006, 57(4–5): 414–418.
[7] SUNG Y M. Mechanical properties of α-cordierite and β-spodumene glass–ceramics prepared by sintering and crystallization heat treatments [J]. Ceram Int, 1997, 23(5): 401–407.
[8] SUMI K, KOBAYASHI Y, KATO E. Low-Temperature Fabrication of cordierite ceramics from kaolinite and magnesium hydroxide mixtures with boron oxide additions [J]. J Am Ceram Soc, 2004, 82(3): 783–785.
[9] KIM J S, SONG M E, JOUNG J H, et al. Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics [J]. J Eur Ceramic Soc, 2010, 30: 375–379.
[10] JOUNG J H, KIM J S, SONG M E, et al. Effect of B2O3 on the sintering condition and microwave dielectric properties of Bi4(SiO4)3 ceramics [J]. J Am Ceram Soc, 2008, 91(12): 4165–4167.
[11] WU J M, HUANG H L. Effect of crystallization on microwave dielectric properties of stoichiometric cordierite glasses containing B2O3 and P2O5 [J]. J Mater Res, 2000, 15(15): 222–227.
[12] WANG S F, CHIANG C C, WANG C H. Effects of B2O3 on the phase formation of Ba2Ti9O20 ceramic [J]. Mater Chem Phys, 2003, 79(s2–3): 256–260.
[13] CAMERUCCI M A, URRETAVIZCAYA G, CAVALIERI A L. Mechanical behavior of cordierite and cordierite–mullite materials evaluated by indentation techniques [J]. J Eur Ceram Soc, 2001, 21(9): 1195–1204.
[14] CHOTARD T, SORO J, LEMERCIER H, et al. High temperature characterisation of cordierite–mullite refractory by ultrasonic means [J]. J Eur Ceram Soc, 2008, 28(11): 2129–2135.
[15] BOCCACCINI D N, LEONELLI C, RIVASI M R, et al. Microstructural investigations in cordierite–mullite refractories [J]. Ceram Int, 2005, 31(3): 417–432.
[16] XU X H, RAO Z G, WU J F, et al. In-situ synthesized mullite bonded silicon carbide ceramics used in solar heat receiver [J]. J Chin Ceram Soc, 2014, 42(7): 871–877.
[17] XU X H, MA X H, WU J F, et al. In-Situ Preparation and thermal shock resistance of mullite–cordierite heat tube material for solar thermal power [J]. J Wuhan Univ Technol–Mater Sci,2013, 28(3): 407–412.
[18] POURROY G, ANGELOV S. ESR study of CuO-doped cordierite [J]. J Mater Sci, 1992, 27(24): 6730–6734.
[19] ALFONSO J E, GARZÓN R, MORENO L C. Behavior of the thermal expansion coefficient of α-MoO3 as a function of the concentration of the Nd3+ ion [J]. Phys B: Cond Matter, 2012, 407(19): 4001–4004.
[20] CHEN G. Sintering, crystallization, and properties of CaO doped cordierite-based glass–ceramics [J]. J Alloys Compd, 2008, 455(1): 298–302.
[21] WU J F, CHENG H, XU X H, et al. Effect of sintering aids on the densification of andalusite ceramics [J], Adv Mater Res. 2014, 842: 78–82.
[22] OBRADOVIC N, ?OR?EVIC N, FILIPOVIC S, et al. Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive [J]. Powder Technol, 2012, 218: 157–161.
[23] KHEZRABADI M N, NAGHIZADEH R, ASSADOLLAHPOUR P, et al. An investigation on the properties and microstructure of mullite-bonded cordierite ceramics [J]. J Ceram Process Res, 2007, 8(6): 431.
[24] HIPEDINGER N E, SCIAN A N, AGLIETTI E F. Phase development during thermal treatment of a fast-setting cordierite–mullite refractory[J]. Proced Mater Sci, 2015, (9): 305–312.
[25] EL–BUAISHI N M, JANKOVI?–?ASTVAN I, JOKI? B, et al. Crystallization behavior and sintering of cordierite synthesized by an aqueous sol–gel route [J]. Ceram Int, 2012, 38(3): 1835–1841.
[26] ZHU H, ZHOU H, XIE Y, et al. Study on properties of forsterite/cordierite ceramic composites [J]. J Mater Sci Mater Electr, 2010, 21(3): 231–235.
[27] KOBAYASHI Y, SUMI K, KATO E. Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives[J]. Ceram Int, 2000, 26(7): 739–743.
[28] GUO W, LU H, FENG C. Influence of La2O3 on preparation and performance of porous cordierite from rice husk [J]. J Rare Earths, 2010, 28(4): 614–617.
[29] LUO X, QU, ZHANG G. Characterization comparison of Eu3+, Dy3+ and Er3+ on phase transition of cordierite [J]. Acta Mater Compos Sin, 2013, 30(4): 148–155.
[30] BELYAKOV A V. Solid solutions of silicon oxide in mullite [J]. Glass Ceram, 2003, 60(11):402–405.
[31] ALFONSO J E. Preparation and chemical characterization of neodymium-doped molybdenum oxide films grown using spray pyrolysis [J]. Rev Mex de Fisica, 2014, 60(2): 114–118.
[32] HALLSTEDT B, LIU Z K. Software for thermodynamic and kinetic calculation and modelling[J]. J Am Chem Soc, 2009, 33(2): 796–798.
[33] BALE C W, BÉLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases-recent developments[J]. Calphad-computer Coupl Phase Diagrams  Thermochem, 2009, 33(2): 295–311.
[34] KLÍMOVÁ K, LEITNER J. DSC study and phase diagrams calculation of binary systems of paracetamol[J]. Thermochim Acta, 2012, 550(24): 59–64.
[35] CHAKRAVARTY S, MOHANTY A, BANERJEE A, et al. Composition, mineral matter characteristics and ash fusion behavior of some Indian coals[J]. Fuel, 2015, 150(3): 96–101.
[36] ZHAO Y, ZHANG Y, BAO S, et al. Calculation of mineral phase and liquid phase formation temperature during roasting of vanadium-bearing stone coal using FactSage software [J]. Int J Miner Process, 2013, 124(6): 150–153.
[37] WEN H, XI H, LI Q, et al. In-situ reaction sintering and characterization of mullite–cordierite composites [J]. J Chin Ceram Soc, 2010, 38(2): 347–351.
[38] SHI Z. Preparation of cordierite ceramic using mixtures of Ce4+-Modified amorphous powder and oxide powders [J]. J Rare Earths, 2006, 24(1): 263–265.
[39] EVANS D L, FISCHER G R, GEIGER J E, et al. Thermal expansions and chemical modifications of cordierite[J]. J Am Ceram Soc, 1980, 63(11–12): 629–634.
[40] SHI Z, LIANG K, GU S. Effects of CeO2 on phase transformation towards cordierite in MgO–Al2O3–SiO2 system [J]. Mater Lett, 2001, 51(1): 68–72.
[41] PREDECKI P, HAAS J, FABER J, et al. Structural aspects of the lattice thermal expansion of hexagonal cordierite[J]. J Am Ceram Soc, 1987, 70(3): 175–182.
[42] LANGER K, SCHREYER W. Infrared and powder X-Ray diffraction studies on the polymorphism of cordierite, Mg2(Al2Si5O18) [J]. Am Miner, 1969, 54(1442): 11.
[43] ZHAO Y, ZHANG Y, BAO S, et al. Calculation of mineral phase and liquid phase formation temperature during roasting of vanadium-bearing stone coal using FactSage software [J]. Int J Miner Process, 2013, 124: 150–153.
[44] LI H, YOSHIHIKO N, DONG Z, et al. Application of the FactSage to predict the ash melting behavior in reducing conditions [J]. Chin J Chem Eng, 2006, 14(6): 784–789.
[45] YALAMAÇ E, AKKURT S. Additive and intensive grinding effects on the synthesis of cordierite[J]. Ceram Int, 2006, 32(7): 825–832.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com