[1] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics [J]. Nature Photonics, 2011, 5: 141–148.
[2] Popescu M A. Non-Crystalline Chalcogenides [M]. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000.
[3] Tanaka K. Reversible photoinduced change in intermolecular distance in amorphous As2S3 network [J]. Appl Phys Lett, 1975, 26(5): 243–245.
[4] Tanaka K. Photoexpantion in As2S3 glass [J]. Phys Rev B, 1998, 57(9): 5163–5167.
[5] Tanaka K. Photoinduced structural changes in amorphous semiconductors [J]. Semiconductors, 1998, 32(8): 861–866.
[6] KAVETSKYY T S, VALEEV V F, Nuzhdin V I, et al. Optical properties of chalcogenide glasses with ion-synthesized copper nanoparticles [J]. Tech Phys Lett, 2013, 39(1): 1–4.
[7] Stepanov A L, Evlyukhin E A, Nuzhdin V I, et al. Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation [J]. Appl Phys A: Mater Sci Process, 2013, 111: 261–264.
[8] Kavetskyy T, Stepanov A L, Bazarov V V, et al. Comparative study of optical properties of polarizing oxide glasses with silver nanorods and chalcogenide glasses with copper nanoparticles [J]. Phys Procedia, 2013, 48: 191–195.
[9] Kavetskyy T S, Nuzhdin V I, Valeev V F, et al. Optical properties of the synthesized ZnO with ion implanted silver nanoparticles [J]. Tech Phys Lett, 2015, 41(6): 537–539.
[10] Stronski A V, Paiuk O P, Strelchuk V V, et al. Photoluminescence of As2S3 doped with Cr and Yb [J]. Semicond Phys Quant Electron Optoelectron, 2014, 17(4): 341–345.
[11] Kavetskyy T S. Radiation-induced optical darkening and oxidation effects in As2S3 glass [J]. Semicond Phys Quant Electron Optoelectron, 2014, 17(3): 308–312.
[12] Kavetskyy T S, Stepanov A L. Effects of gamma-irradiation and ion implantation in chalcogenide glasses [M] // Karmakar B, Rademann K, Stepanov A L eds. Glass Nanocomposites: Synthesis, Properties and Applications. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier Academic Press, 2016: 341–358.
[13] Shpotyuk M, Shpotyuk O, Golovchak R, et al. FSDP-related correlations in -irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised [J]. J Phys Chem Solids, 2013, 74: 1721–1725.
[14] Shpotyuk O, Kovalskiy A, Kavetskyy T, et al. Chemical interaction of chalcogenide vitreous semiconductors with absorbed impurities induced by -irradiation [J]. J Optoelectron Adv Mater, 2003, 5(5): 1181–1185.
[15] Shpotyuk O I. Radiation-induced effects in chalcogenide vitreous semiconductors [M] // Fairman R, Ushkov B eds. Semiconducting Chalcogenide Glass I: Glass Formation, Structure, and Stimulated Transformations in Chalcogenide Glasses – Semiconductors and Semimetals. Elsevier Academic Press, 2004: 215–260.
[16] Kavetskyy T S. Long-term radiation-induced optical darkening effects in chalcogenide glasses [J]. Semicond Phys Quant Electron Optoelectron, 2016, 19(4). http//dx.doi.org/10.15407/spqeo.
[17] Shpotyuk M V, Vakiv M M, Shpotyuk O I, et al. On the origin of radiation-induced metastability in vitreous chalcogenide semiconductors: The role of intrinsic and impurity-related destruction-polymerization transformations [J]. Semicond Phys Quant Electron Optoelectron, 2015, 18(1): 90–96.
[18] Borisova Z U. Chemistry of Glassy Semiconductors (in Russian) [M]. Leningrad: LSU, 1972.
[19] Feltz A. Amorphous and Vitreous Inorganic Solids (in Russian) [M]. Moscow: Mir, 1986.
[20] Kavetskyy T, Kaban I, Shpotyuk O, et al. On the structural-optical correlations in radiation-modified chalcogenide glasses [J]. J Phys: Conf Ser, 2011, 289: 012007(1–6).
[21] Kavetskyy T, Shpotyuk O, Kaban I, et al. Atomic- and void-species nanostructures in chalcogenide glasses modified by high-energy -irradiation [J]. J Optoelectron Adv Mater, 2007, 9(10): 3247–3252.
[22] Introduction on Instrumented Indentation, http://www.csm-instruments. com.
[23] Melnichenko T M, Fedelesh V I, Jurkin I M, et al. Internal pressure, microhardness and fluidity limit in the chalcogenide glasses [J]. Phys Chem Solid State, 2002, 3(2): 292–298.
[24] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J Mater Res, 1992, 7(6): 1564–1583.
[25] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J Mater Res, 2004, 19(1): 3–20.
[26] Kavetskyy T S, Borc J, Kukhazh Y Y, et al. The influence of low dose ion-irradiation on the mechanical properties of PMMA probed by nanoindentation [M] // Petkov P, Tsiulyanu D, Kulisch W, et al. eds. Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series—A: Chemistry and Biology. Dordrecht: Springer, 2015: 65–71.
|