首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
十六烷基三甲基溴化铵改性凹凸棒石黏土及其电流变性能
作者:雷西萍 王明忠 韩丁 刘钟余 
单位:西安建筑科技大学材料与矿资学院功能材料研究所 西安 710055 
关键词:凹凸棒石黏土 十六烷基三甲基溴化铵 改性 电流变效应 介电性能 
分类号:TB381
出版年,卷(期):页码:2016,44(11):1646-1654
DOI:10.14062/j.issn.0454-5648.2016.11.16
摘要:

采用不同浓度的十六烷基三甲基溴化铵(CTAB)对凹凸棒石黏土(ATC)进行改性,对比了施加电场前后其电流变性能的变化规律,结果表明:改性凹凸棒石黏土在电场E作用下表现出Bingham流体特性,并且屈服应力τy与E0.4成正比;65 ℃是电流变性能突变的临界温度;通过介电性能的测试,发现CTAB对电流变响应的贡献较大。60 d后,改性凹凸棒石黏土的悬浮率仍可达到91%。
 

The electrorheological effect of cetyl trimethyl ammonium bromide (CTAB) modified attapulgite clay (ATC) in the absence and presence of electric field E was investigated. The results show that the ATC modified with CTAB appears the Bingham fluid behavior, and the yield stress τy, is proportional to E0.4. The critical temperature on the ER response is 65 ℃. The ER response mechanism is supposed based on the results of dielectric constant, and the CTAB is mainly contributed to the ER response. The clay suspension with the concentration of 91 % after the modification with CTAB is still stable after 60 d.
 

基金项目:
国家自然科学基金项目(51204131)。
作者简介:
雷西萍(1979—),女,博士,副教授。
参考文献:

[1]CHENG Q, PAVLINEK V, HE Y, et al. Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres[J]. Colloid Polym Sci, 2011, 289: 799–805.
[2]GEORGE G, CHASE Patanee Dachavijit. An experimental study of electrorheological fluid flow through a packed bed of glass beads[J]. Transp Porous Med, 2008, 72: 25–35.
[3]HIAMTUP P, SIRIVAT A, JAMIESON A M.  Electrorheological properties of polyaniline suspensions: Field-induced liquid to solid transition and residual gel structure[J]. J Colloid Interface Sci, 2006, 295: 270–278.
[4]YIN J B, ZHAO X P, XIANG L, et al. Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles[J]. Soft Matter, 2009, 5: 4687–4697.
[5]WANG J E, SEVERTSON S J, STEIN A. Significant and concurrent enhancement of stiffness, strength, and toughness for paraffin wax through organoclay addition[J]. Adv Mater, 2006, 18: 1585–1588.
[6]BAFNA A, BEAUCAGE G, MIRABELLA F, et al. Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems[J]. Polymer, 2003, 44: 1103–1108.
[7]JIANG J, TIAN Y, MENG Y. Structure parameter of electrorheological fluids in shear flow[J]. Langmuir, 2011, 27: 5814–5823.
[8]WERELEY N M. Nondimensional Herschel–Bulkley analysis of magnetorheological and electrorheological dampers[J]. J Intell Mater Syst Struct, 2008, 19: 257–268.
[9]ZHU C S. Nondimensional analysis of annular duct flow in magnetorheological/elecrorheological dampers[J]. Int J Mod Phys B, 2005, 19: 1577–1583.
[10]TIAN Y, MENG Y, WEN S. Particulate volume effect in suspensions with strong electrorheological response[J]. Mater Lett, 2003, 57: 2807–2811.
[11]BROOKS D A. Selection of commercial electro-rheological devices[C]//Tao R, Roy G D, eds. Proceeding of the 4th International Conference on Electro-rheological Fluids. Singapore: World Scientific, 1994: 643–656.
[12]HAO T. Electrorheological suspensions[J]. Adv Colloid Interface Sci, 2000, 97: 1–35.
[13]HAVELKA K O, PIALET J W. Electrorheological technology: The future is now[J]. Chemtech, 1996, 26: 36–45.
[14]ANDERSON R A. Electrostatic forces in an ideal spherical-particle electrorheological fluid[J]. Langmuir, 1994, 10: 2917–2928.
[15]WINSLOW W M. Induced fibration of suspensions[J]. J Appl Phys, 1949, 20: 1137–1140.
[16]KLASS D L, MARTINEK T W. Electro-viscous fluids Ⅰ. Rheological properties[J]. J Appl Phys, 1967, 38: 67–74.
[17]KLASS D L, MARTINEK T W. Electro-viscous fluids Ⅱ. Rheological properties[J]. J Appl Phys, 1967, 38: 75–80.
[18]STANGROOM J E. Electrorheological fluid[J]. Phys Technol, 1983, 14: 290–296.
[19]BOISSY C, ATTEN P, FOULC J N. The conduction model of the electrorheological effect revisited[J]. J Intell Mater Syst Struct, 1996, 7: 599–603.
[20]DAVIS L C. Polarization forces and conductivity effects in electrorheological fluids[J]. J Appl Phys, 1992, 72: 1334–1340.
[21]FELICI N J, FOULC J N, ATTEN P. A conduction model of electrorheological effects[C]//TAO R, ROY G D eds. Proceeding of the 4th International Conference on Electro-rheological Fluids. Singapore: World Scientific, 1994: 139–152.
[22]HAO T, KAWAI A, IKAZAKI F. The yield stress equation for the electrorheological fluids[J]. Langmuir, 2000, 16: 3058–3066.
[23]DEINEGA Y F, VINOGRADOV G V. Electric fields in the rheology of disperse system[J]. Rheol Acta, 1984, 23: 636–651.
[24]OSTUBO Y, EDAMURA K. Electrorheology of dilute suspensions induced by hydrodynamic instability[J]. J Non-Newton Fluid Mech, 1997, 71: 183–195.
[25]BLOCK H, KELLY J P. Electrorheology[J]. J Phys D, 1988, 21: 1661–1677.
[26]YIN J B, ZHAO X P. Electrorheological fluids bases on glycerol-activated titania gel particles and silicone oil with high yield strength[J]. J Colloid Interface Sci, 2003, 257: 228–236.
[27]GAST A P, ZUKOSKI C F. Electrorheological fluids as colloidal suspensions[J]. Adv Colloid Interface Sci, 1989, 30: 153–202.
[28]JORDAN T C, SHAW M T. Electrorheology[J]. IEEE Trans Electr Insul, 1989, 24: 849–878.
[29]KIM Y D, KLINGENBERG D J. Two roles of non-ionic surfactants on the electro-rheological response[J]. J Colloid Interface Sci, 1996, 183: 568–578.
[30]FILISCO F E, ARMSYRONG W F. Electric field dependent fluids[R]. US Patent, 4744914. 1988–05–17.
[31]BÖSE H. MR suspensions and their applications[C]//NAKANO M, KOYAMA K, eds. Proceeding of the 6th Int. Conf. on ERF, Singapore: World Scientific, 1998: 240.
[32]ZHANG W L. Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology[J]. Colloid Polym Sci, 2012, 290: 1743–1748.
[33]HYUN S C. Synthesized palygorskite/polyaniline nanocomposite particles by oxidative polymerization and their electrorheology[J]. Appl Clay Sci, 2015, 107: 165–172.
[34]LUO H M. Preparation of lactose-based attapulgite template carbon materials and their electrochemical performance[J]. J Solid State Electrochem, 2015, 19: 1171–1180.
[35]ZHAO X, LUO H, DU K, et al. Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors[J]. J Appl Electrochem, 2014, 44: 719–725.
[36]MA X J, LIU L H. Preparation and properties of modified attapulgite/polyurethane bioactive macromolecular carrier[J]. Res Chem Intermed, 2012, 38: 223–232.
[37]VERONIKA Vágvölgyi, LISA M, DANIEL. Dynamic and controlled rate thermal analysis of attapulgite[J]. Therm Anal Calorim, 2008, 2: 589–594.
[38]CHEN Zhongshan, HE Jietao. Sorption and desorption properties of Eu(III) on attapulgite[J]. J Radioanal Nucl Chem, 2015, DOI: 10.1007/s10967-015-4252-9.
[39]WANG L H, SHENG J. Preparation and properties of polypropylene/org-attapulgite nanocomposites[J]. J Polym, 2005, 46: 6243–6249.
[40]LIU P. Hyperbranched aliphatic polyester grafted attapulgite via a melt polycondensation process[J]. J Appl Clay Sci, 2007, 35: 11–16.
[41]NEAMAN A, SINGER A. Possible use of the Sacalum (Yucatan) palygorskite as drilling muds[J]. J Appl Clay Sci, 2004, 25: 121–124.
[42]LIU Y D, FANG F F, CHOI H J. Silica nanoparticle decorated conducting polyaniline fibers and their electrorheology[J]. Mater Lett, 2010, 64: 154–156.
[43]JIN J B, XIA X, XIANG L Q, et al. Temperature effect of electrorheological fluid based on polyaniline derived carbonaceous nanotubes[J]. Smart Mater, 2011, 20: 1–8.
[44]PETRZHIK G G, CHERTKOVA O A, TRAPEZNIKOV A A, et al. Electrorheological effect in nonaqueous dispersions of various compositions in relation to the electric field parameter[J]. Dokl. Akad. Nauk SSSR. 1980, 253: 173–178.
[45]TRAPEZNIKOV A A, PETRZHIK G G., CHERTKOVA O A. Electrorheological properties of nonaqueous dispersions of titanium dioxide and silicone dioxide in relation to concentration and moisture content of filler[J]. Kolloidn Zh, 1981, 43: 1134–1139.
[46]CHERTKOVA O A, PETRZHIK G G, TRAPEZNIKOV A A. Influence of nature of surfactant on the electrorheological effect in nonaqueous dispersions[J]. Kolloidn Zh, 1982, 44: 83–87.
[47]YIN J B, ZHAO X P. Electrorheology of nanofiber suspensions[J]. Nanoscale Res Lett, 2011, 6: 256–272.
[48]HAO T. Electrorheological fluids[J]. Adv Mater, 2001, 13(24): 1847–1857.
[49]KIM M J, LIU Y D, CHOI H J. Urchin-like polyaniline microspheres fabricated from self-assembly of polyaniline nanowires and their electro-responsive characteristics[J]. Chem Eng J, 2014, 235: 186–190.
[50]KLINGERBERG D J, FRANK Van S, ZUKOSKI C F. The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit[J]. J Chem Phys, 1991, 94: 6161–6170.
[51]DAVIS L C. Ground state of an electrorheological fluid[J]. Phys Rev A, 1992, 46: 719–723.
[52]Jin H J, Choi H J,Yoon S H, et al. carbon nanotube-adsorbed polystyrene and poly(methyl methacrylate) microspheres[J]. Chem Mater, 2005, 17: 4034–4037.
[53]KIM Y D, KIM J H. Synthesis of polypyrrole-polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions[J]. Colloid Polym Sci, 2008, 286: 631–637.
[54]MANUEL J E, ANGEL V D, JANUS Z P. Effect of additives and measurement procedure on the electrorheology of hematite/silicone oil suspensions[J]. Rheological Acta, 2006, 45: 865–876. 
[55]WEI C G. Electrorheological Technology—Mechanism MAterials Engineering Application[M]. Beijing: Beijing Institute Press, 2000.
[56]LIN Y M, LEI X P, SONG X F, et al. Conductivity and dielectric properties of polyaniline@fly-ash floating beads composite[J]. Acta Mater Compos Sin (in Chinese), 2015, 32(4): 948–954.
[57]LEI X P, HAN D, WANG Y, et al. Preparation and electrorheological properties of polyaniline @ quaternary ammonium cations modified fly ash floating bead[J]. Mater Compos Sin (in Chinese), DOI: 10.13801/j.cnki.fhclxb.20151117.001.(in Chinese)
[58]DÜRRSCHMIDT T, HOFFMANN H. Electrorheological effects in suspensions of hydrophobically modified saponite[J]. Colloids Surf A: Physicochem Eng Aspects, 1999, 156: 257–269.
[59]MURRAY H H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Appl Clay Sci, 2000, 17: 207–221.
[60]DONG Q N. Infrared Spectroscopy[M] (in Chinese). Beijing: Petroleum Chemical Industry Press, 1977.
[61]WANG A Q, WANG W B, ZHENG Y A, et al. Dissociation of Attapulgite Crystal Beam and Its Functional nano Composites[M] (in Chinese). Beijing: Science Press, 2014.
[62] LEI X P, LIU Y S, SU Z X. Study on synthesis and characterization of organo-attapulgite/polyaniline-DBSA based on emulsion polymerization method[J]. Polym Compos, 2008, 29: 239–244.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com