首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
非水溶液中有序介孔磷酸盐分子筛M–Zr–P–O(M=Ca、Al)合成及表征
作者:陈颜龙 祝琳华 司甜 
单位:昆明理工大学化学工程学院 昆明 650500 
关键词:多金属介孔磷酸盐分子筛 非水合成 热稳定性 孔壁结构 
分类号:TB383
出版年,卷(期):页码:2017,45(1):0-0
DOI:10.14062/j.issn.0454-5648.2017.01.04
摘要:

以三嵌段聚合物F127为模板剂,乙醇为溶剂,利用溶剂挥发诱导自组装法合成了Ca–Zr–P–O和Al–Zr–P–O有序介孔多金属磷酸盐分子筛。采用N2吸附–脱附分析、扫描电子显微镜和小角X射线衍射分析了材料的介孔结构的有序性及其热稳定性;通过红外光谱、魔角核磁共振、X射线光电子能谱和紫外可见漫反射光谱研究了2种介孔分子筛骨架结构中金属离子的存在状态。结果表明:2种磷酸盐分子筛,均属于二维六方有序介孔结构,骨架结构为非晶态,平均孔径介于7~10 nm,比表面积达120~260 m2/g。Ca2+和Al3+均匀分散在分子筛的孔壁骨架结构中,Ca2+对[ZrO4]配位结构影响较大,Al3+具有良好的配位能力且不影响[ZrO4]配位结构。Ca2+和Al3+性质上的差异导致2种介孔磷酸盐材料具有不同的热稳定性:Ca0.25Zr0.75PO经700 ℃焙烧5 h后能维持有序的介孔结构,Al0.5Zr0.5PO经800 ℃焙烧仍能保持有序介孔结构。
 

Mesoporous multi–metal phosphates of Ca–Zr–PO and Al–Zr–PO were synthesized by a facile evaporation–induced self–assembly (EISA) method with an amphiphilic block copolymer, F127 as a template and ethanol as a solvent. The mesoporous structures and thermal stability were characterized by N2 adsorption–desorption analysis, transmission electron microscopy and small angle X–ray diffraction. The chemical state and coordination modes of metal ions in frameworks of these two mesoporous phosphates were determined by Fourier transform infrared spectroscopy, magic angle spinning nuclear magnetic resonance, X–ray photoelectron spectroscopy and UV–Vis diffuse reflectance spectroscopy. The results indicate that the two mesoporous phosphates both exhibit amorphous pore wall and two–dimensional hexagonal structure with average pore diameters of 7–10 nm and specific surface area of 120–260 m2/g. Calcium and aluminum ions are uniformly dispersed in the pore–wall framework and the calcium ion has an influence on the Zr—O tetrahedral coordination unit, while aluminum ion has little influence. The mesoporous phosphates with Ca–Zr–PO calcined at 700 ℃ and Al–Zr–PO calcined at 800 ℃ both possess a great thermal stability. The difference of coordination capability between the two metal cations could be due to their different thermal stabilities.
 

基金项目:
国家自然科学基金项目(20866004)。
作者简介:
陈颜龙(1989—),男,硕士研究生。
参考文献:

[1]KIMURA T. Surfactant–template mesoporous aluminophosphate– based materials and the recent progress[J]. Microp Mesop Mater, 2005, 77(2/3): 97–107.
[2]MIAO Z C, ZHAO H H,YANGa J, et al. One–pot synthesis of ordered mesoporous transition metal–zirconium oxophosphate composites with excellent textural and catalytic properties[J]. New J Chem, 2015, 39(2): 1322–1329.
[3]MIAO Z C, SONG H L, ZHAO H H, et al. One–pot synthesis of mesoporous ZrPW solid acid catalyst for liquid phase benzylation of anisole[J]. Catal Sci Technol, 2014, 4(3): 838–850.
[4]ZHANG F Z, XIE Y R, LU W, et al. Preparation of microspherical α–zirconium phosphate catalysts for conversion of fatty acid methyl esters to monoethanolamides[J]. J Colloid Interface Sci, 2010, 349(2): 571–577.
[5]DAS S K, BHUNIA M K, SINHA A K, et al. Synthesis, characterization, and biofuel application of mesoporous zirconium oxophosphates[J]. ACS Catal, 2011, 1(5): 493–501.
[6]SINHAMAHAPATRA A, SINHA A, PAHARI S K, et al. Room temperature baeyer–villiger oxidation using molecular oxygen over mesoporous zirconium phosphate[J]. Catal Sci Technol, 2012, 2(11): 2375–2382.
[7]MIAO Z C, ZHAO H H, SONG H L, et al. Ordered mesoporous zirconium oxophosphate supported tungsten oxide solid acid catalysts: the improved Bronsted acidity for benzylation of anisole[J]. RSC Adv, 2014, 4(43): 22509–22519.
[8]XU H M, MIAO Z C, ZHAO H H, et al. Dehydration of fructose into 5–hydroxymethylfurfural by high stable ordered mesoporous zirconium phosphate[J]. Fuel, 2015, 145: 234–240.
[9]SWAIN S K, PATNAIK T, SINGH V K, et al. Kinetics, equilibrium and thermodynamic aspects of removal of fluoride from drinking water using meso–structured zirconium phosphate[J]. Chem Eng J, 2011, 171(3): 1218–1226.
[10]JIA Y J, ZHANG Y J, WANG R W, et al. Mesoporous zirconium phosphonate hybrid material as adsorbent to heavy metal ions[J]. Ind Eng Chem Res, 2012, 51(38): 12266–12273.
[11]MA T Y, LI H, TANG A N, et al. Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques[J]. Small, 2011, 7(13): 1827–1837.
[12]HOGARTH W H J, DINIZ DA COSTA J C, DRENNAN J, et al. Proton conductivity of mesoporous sol–gel zirconium phosphates for fuel cell applications[J]. J Mater Chem, 2005, 15(7): 754–758.
[13]HE W, ZHANG X, Du X, et al. Bio–assisted synthesis of mesoporous Li3V2(PO4)3 for high performance lithium–ion batteries[J]. Electrochim Acta, 2013, 112: 295–303.
[14]SHEN S D, TIAN B Z, YU C Z, et al. Synthesis of highly ordered thermally stable cubic mesostructured zirconium oxophosphate templated by tri–headgroup quaternary ammonium surfactants[J]. Chem Mater, 2003, 15(21): 4046–4051.
[15]YU J, WANG A, LI X, et al. An improved calcination route to obtain high quality mesoporous aluminophosphates materials[J]. Mater Lett, 2007, 61(13): 2620–2623.
[16]ZHAO D Y, LUA Z H, KEVAN L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves[J]. Chem Commun, 1997, 11: 1009–1010.
[17]CIESLA U, FROEBA M, STUCKY G, et al. Highly ordered porous zirconias from surfactant–controlled syntheses: zirconium oxide– sulfate and zirconium oxo phosphate[J]. Chem Mater, 1999, 11(2): 227–234.
[18]BRINKER C J, LU Y F, SELLINGER A, et al. Evaporation–induced self–assembly: nanostructures made easy[J]. Adv Mater, 1999, 11(7): 579–585.
[19]TIAN B Z, LIU X Y, TU B, et al. Self–adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs[J]. Nature Mater, 2003, 2(3): 159–163.
[20]MIAO Z C, XU L L, SONG H L, et al. One–pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties[J]. Catal Sci Technol, 2013, 3(8): 1942–1954.
[21]WANG L M, TIAN B Z, FAN J, et al. Block copolymer templating syntheses of ordered large–pore stable mesoporous aluminophosphates and Fe–aluminophosphate based on an “acid–base pair” route[J]. Microp Mesop Mater, 2004, 67(2/3): 123–133.
[22]FAN J, BOETTCHER S W, Stucky G D. Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol–gel process[J]. Chem Mater, 2006, 18(26): 6391–6396.
[23]SING K S W, EVERETT D H, HAUL R A W, et al. Reproting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4): 603–619.
[24]KAPOOR M P, ANUJ R. Synthesis of mesoporous hexagonal titanium aluminophosphate molecular sieves and their catalytic applications[J]. Appl Catal A, 2000, 203(2): 311–319.
[25]KAPOOR M P, INAGAKI S, YOSHIDA H. Novel zirconium– titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting[J]. J Phys Chem B, 2005, 109(19): 9231–9238.
[26]GUO X F, DING W P, WANG X G, et al. Synthesis of a novel mesoporous iron phosphate[J]. Chem Commun, 2001, 8: 709–710.
[27]YUAN Z Y, REN T Z, AZIOUNE A, et al. Marvelous self–assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability[J]. Catal Today, 2005, 105(3/4): 647–654.
[28]REN T Z, YUAN Z Y, SU B L. Surfactant–assisted preparation of hollow microspheres of mesoporous TiO2[J]. Chem Phys Lett, 2003, 374(1/2): 170–175.
[29]NISHIYAMA Y, TANAKA S, HILLHOUSE H W, NISHIYAMA N, et al. Synthesis of ordered mesoporous zirconium phosphate films by spin coating and vapor treatments[J]. Langmuir, 2006, 22(23): 9469–9472.
[30]JIMENEZ J J, MAIRELES T P, OLIVERA P P, et al. Surfactant– assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties[J]. Adv Mater, 1998, 10(10): 812–815.
[31]WU P, LIU Y M, HE M Y, et al. Postsynthesis of hexagonally packed porous Zirconium Phosphate through a Novel Anion Exchange between zirconium oxide mesophase and phosphoric acid[J]. Chem Mater, 2005, 17(15): 3921–3928.
[32]CHEN X R, JU Y H, MOU C Y. Direct Synthesis of mesoporous sulfated silica–zirconia catalysts with high catalytic activity for biodiesel via esterification[J]. J Phys Chem C, 2007, 111(50): 18731–18737.
[33]DAS S K, BHUNIA M K, SINHA A K, et al. Self–assembled mesoporous zirconia and sulfated zirconia nanoparticles synthesized by triblock copolymer as template[J]. J Phys Chem C, 2009, 113(20): 8918–8923.
[34]ZIYAD M, ROUIMI M, PORTEFAIX J L. Activity in hydrotreatment processes of Ni–Mo loaded zirconium phosphate Zr3(PO4)4[J]. Appl Catal, A, 1999, 183(1): 93–105.
[35]TARAFDAR A, PANDA A B, PRADHAN N C, et al. Synthesis of spherical mesostructured zirconium phosphate with acidic properties[J]. Microp Mesop Mater, 2006, 95(1/3): 360–365.
[36]ROTOLE J A, SHERWOOD P M A. Aluminum Phosphate by XPS[J]. Surf Sci Spectra, 1998, 5(1): 60–66.
[37]RENAULT O, GOSSET L G., ROUCHON D, et al. Angle–resolvedx– rayphotoelectron spectroscopy of ultrathin Al2O3 filmsgrown by atomiclayerde position[J]. J Vac Sci Technol, A, 2002, 20(6): 1867–1876.
[38]孙婧婧, 李思维, 冯祖德. 钙掺杂介孔氧化锆的合成及其表征[J].无机化学学报, 2009, 25(3): 480–484.
SUN J J, LI S W, FENG Z D. Chin J Inorg Chem (in Chinese), 2009, 25(3): 480–484.
[39]KIM M S, KO Y D, HONG J H, Characteristics and processing effects of ZrO2 thin films grown by metal–organic molecular beam epitaxy[J]. Appl Surf Sci, 2004, 227(1/4): 387–398.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com