首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
复合半导体光电解水制氢研究进展
作者:周俊琛 周权 李建保 林仕伟 
单位:海南大学材料与化工学院 热带岛屿资源先进材料教育部重点实验室 海口 570228 
关键词:光解水 复合半导体 能带结构 电荷迁移 
分类号:B33; TB34
出版年,卷(期):页码:2017,45(1):0-0
DOI:10.14062/j.issn.0454-5648.2017.01.14
摘要:

通过半导体光电解水生产氢气是将太阳能转化并储存为化学能的理想途径。但单一半导体由于自身的局限性很难在水溶液中稳定并高效的分解水,通过半导体的复合,不仅提高了太阳光的吸收率,并且有效降低了载流子的复合,是一种提高转化效率的有效方法。根据不同半导体复合后能带匹配和界面性质进行归类,介绍了复合半导体光解水的机理和制备工艺,对其存在问题进行探讨并对发展前景进行了展望。
 

Water splitting hydrogen production by semiconductor photocatalysts is an effective approach of converting solar energy into chemical energy. However, single semiconductor is difficult to split water efficiently due to its limitations. Semiconductor coupling is an effective method of enhancing the conversion efficiency because it can enhance solar energy absorption and reduce the carrier recombination. This review classified the composite semiconductors and summarized research progress on their preparation methods and the related photocatalytic mechanisms according to the different types of semiconductor combinations. The present challenges were also discussed, and the perspectives of the future research were proposed.
 

基金项目:
国家自然科学基金项目(51462008);天津大学–海南大学协同创新基金项目。
作者简介:
周俊琛(1991—),男,硕士研究生。
参考文献:

[1] FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37–38.
[2] LEWIS N S. Light work with water[J]. Nature, 2001, 414(6864): 589–590.
[3] SIVULA K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis[J]. J Phys Chem Lett, 2013, 4(10): 1624–1633.
[4] PRÉVot M S, SIVULA K. Photoelectrochemical tandem cells for solar water splitting[J]. J Phys Chem C, 2013, 117(35): 17879–17893.
[5] CHO S, JANG J W, LEE K H, et al. Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes[J]. APL Mater, 2014, 2(1): 010703.
[6] LI Z, LUO W, ZHANG M, et al. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy Environ Sci, 2013, 6(2): 347–370.
[7] MATTHEWS R W. An adsorption water purifier with in situ photocatalytic regeneration[J]. J Catal, 1988, 113(2): 549–555.
[8] XIAO F X, MIAO J, TAO H B, et al. One–dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis[J]. Small, 2015, 11(18): 2115–2131.
[9] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253–278.
[10] HISATOMI T, KUBOTA J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chem Soc Rev, 2014, 43(22): 7520–7535.
[11] LONG M C. CAI W M. Photocatalytic and photoelectrochemical properties of p–n heterojunction composites[A]// Castello G K. ed Handbook of Phot ocatalysts: Preparation, Structure and Applications[C]. New York: Nova Sci Publishers, 2010.
[12] GRÄTZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338–344.
[13] SIVULA K, FORMAL F L, GRA–TZEL M. WO3−Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach[J]. Chem Mater, 2009, 21(13): 2862–2867.
[14] LIN Y, XU Y, MAYER M T, et al. Growth of p–type hematite by atomic layer deposition and its utilization for improved solar water splitting[J]. J Am Chem Soc, 2012, 134(12): 5508–5511.
[15] MAYER M T, DU C, WANG D. Hematite/Si nanowire dual–absorber system for photoelectrochemical water splitting at low applied potentials[J]. J Am Chem Soc, 2012, 134(30): 12406–12409.
[16] KRONAWITTER C X, VAYSSIERES L, SHEN S, et al. A perspective on solar–driven water splitting with all–oxide hetero–nanostructures[J]. Energy Environ Sci, 2011, 4(10): 3889–3899.
[17] SMITH W, WOLCOTT A, FITZMORRIS R C, et al. Quasi–core–shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting[J]. J Mater Chem, 2011, 21(29): 10792–10800.
[18] PIHOSH Y, TURKEVYCH I, MAWATARI K, et al. Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting[J]. Small, 2014, 10(18): 3692–3699.
[19] SHI X, CHOI I Y, ZHANG K, et al. Efficient photoelectrochemical hydrogen production from bismuth vanadate–decorated tungsten trioxide helix nanostructures[J]. Nature Commum, 2014, 5: 4775.
[20] LIU C, TANG J, CHEN H M, et al. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting[J]. Nano Lett, 2013, 13(6): 2989–2992.
[21] XIE Y P, YU Z B, LIU G, et al. CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light[J]. Energy Environ Sci, 2014, 7(6): 1895–1901.
[22] YU Y X, OUYANG W X, LIAO Z T, et al. Construction of ZnO/ZnS/CdS/CuInS2 Core–Shell Nanowire Arrays via Ion Exchange: p–n Junction Photoanode with Enhanced Photoelectrochemical Activity under Visible Light[J]. ACS Appl Mater Interface, 2014, 6(11): 8467–8474.
[23] CHENG C, KARUTURI S K, LIU L, et al. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation[J]. Small, 2012, 8(1):37–42
[24] ZHANG X, ZENG M, ZHANG J, et al. Improving photoelectrochemical performance of highly–ordered TiO2 nanotube arrays with cosensitization of PbS and CdS quantum dots[J]. RSC Adv, 2016, 6(10): 8118–8126.
[25] SU J, GUO L, BAO N, et al. Nanostructured WO3/BiVO4 hetero–junction films for efficient photoelectrochemical water splitting[J]. Nano Lett, 2011, 11(5): 1928–1933.
[26] RAO P M, CAI L, Liu C, et al. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation[J]. Nano Lett, 2014, 14(2): 1099–1105.
[27] MA M, KIM J K, ZHANG K, et al. Double–deck inverse opal photoanodes: Efficient light absorption and charge separation inHeterojunction[J]. Chem Mater, 2014, 26(19): 5592–5597.
[28] PILLI S K, JANARTHANAN R,DEUTSCH T G, et al. Efficient photoelectro–chemical water oxidation over cobalt–phosphate (Co–Pi) catalyst modified BiVO4/1D–WO3 heterojunction electrodes[J]. Phys Chem Chem Phys, 2013, 15(35): 14723–14728.
[29] KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual–layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174): 990– 994.
[30] LI J, CUSHING S K, ZHENG P, et al. Solar hydrogen generation by a CdS–Au–TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay andplasmonic photosensitizer[J]. J Am Chem Soc, 2014, 136(23): 8438–8449.
[31] LIU B, WU C H, MIAO J, et al. All inorganic semiconductor nano–wiremesh for direct solar water splitting[J]. ACS Nano, 2014, 8(11): 11739–11744.
[32] KIM E S, KANG H J, MAGESH G, et al. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation[J]. ACS Appl Mater Interface, 2014, 6(20): 17762–17769.
[33] ZHANG X, LIN S, LIAO J, et al. Uniform deposition of water–soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetricelectrodeposition: Effectively prevent aggregation and enhance visible–light photocatalytic activity[J]. Electrochim Acta, 2013, 108: 296–303.
[34] HOU J, YANG C, CHENG H, et al. High–performance p–Cu2O/n–TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting[J]. Energy Environ Sci, 2014, 7(11): 3758–3768.
[35] WANG G, YANG X, QIAN F, et al. Double–sided CdS and CdSe quantum dot co–sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation[J]. Nano Lets, 2010, 10(3): 1088–1092.
[36] EISENBERG D, AHN H S, BARD A J. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphoustitanium dioxide[J]. J Am Chem Soc, 2014, 136(40): 14011–14014.
[37] HOU Y, ZUO F, DAGG A, et al. Visible light–driven α–Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting[J]. Nano Lett, 2012, 12(12): 6464–6473.
[38] MONIZ S J A, ZHU J, TANG J. 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage[J]. Adv Energy Mater, 2014, 4(10): 1066–1070.
[39] XIE M, FU X, JING L, et al. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting[J]. Adv Energy Mater, 2014, 4(5): 39–46.
[40] RESASCO J, ZHANG H, KORNIENKO N, et al. tio2/bivo4 nanowire heterostructure photoanodes based on type ii band alignment[J]. ACS Central Sci, 2016, 2(2): 80–88.
[41] LIU X, WANG F, WANG Q. Nanostructure–based WO3 photoanodes for photoelectrochemical water splitting[J]. Phys Chem Chem Phys, 2012, 14(22): 7894–7911.
[42] HONG S J, LEE S, JANG J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy Environ Sci, 2011, 4(5): 1781–1787.
[43] SAITO R, MISEKI Y, SAYAMA K. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi–composite in a carbonate electrolyte[J]. Chem Commun, 2012, 48(32): 3833–3835.
[44] CHAE S Y, JUNG H, JEON H S, et al. Morphology control of one–dimensional heterojunctions for highly efficient photoanodes used for solar water splitting[J]. J Mater Chem A, 2014, 2(29): 11408–11416.
[45] WANG H, ZHANG L, Chen Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chem Soc Rev, 2014, 43(15): 5234–5244.
[46] KIM H G, BORSE P H, JANG J S, et al. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis[J]. Chem Commun, 2009 (39): 5889–5891.
[47] KIM H G, BORSE P H, CHOI W, et al. Photocatalytic nanodiodes for visible-light photocatalysis[J]. Angew Chem Int Ed, 2005, 44(29): 4585–4589.
[48] KIM E S, NISHIMURA N, MAGESH G, et al. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation[J]. J Am Chem Soc, 2013, 135(14):5375–5383.
[49] AHMED M G, KANDIEL T A, AHMED A Y, et al. Enhanced photoelectro–chemical water oxidation on nanostructured hematite photoanodes via p–CaFe2O4/n–Fe2O3 heterojunction formation[J]. J Phys Chem C, 2015, 119(11): 5864–5871.
[50] MIYAUCHI M, NUKUI Y, ATARASHI D, et al. Selective growth of n–type nanoparticles on p–type semiconductors for Z–scheme photo catalysis[J]. ACS Appl Mater Interf, 2013, 5(19): 9770–9776.
[51] LONG M, CAI W, KISCH H. Visible light induced photoelectrochemical properties of n–BiVO4 and n–BiVO4/p–Co3O4[J]. J Phys Chem C, 2008, 112(2): 548–554.
[52] ZHONG M, HISATOMI T, KUANG Y, et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p–type NiO layers for improved solar water oxidation[J]. J Am Chem Soc, 2015, 137(15): 5053–5060.
[53] CHANG X, WANG T, ZHANG P, et al. Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes[J]. J Am Chem Soc, 2015, 137(26): 8356–8359.
[54] WANG Y C, CHANG C Y, YEH T F, et al. Formation of internal p–n junctions in Ta3N5 photoanodes for water splitting[J]. J Mater Chem A, 2014, 2(48): 20570–20577.
[55] TACHIBANA Y, VAYSSIERES L, DURRANT J R. Artificial photosynthesis for solar water–splitting[J]. Nature Photon, 2012, 6(8): 511–518.
[56] MAEDA K, HIGASHI M,LU D L, et al.Efficient nonsacrificial water splitting through two–step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. J Am Chem Soc, 2010, 132(16): 5858–5868.
[57] SAYAMA K, ABE R, ARAKAWA H, et al. Decomposition of water into H2and O2 by a two–step photoexcitation reaction over a Pt–TiO2photocatalyst in NaNO2 and Na2CO3 aqueous solution[J]. Catal Commun, 2006, 7(2): 96–99.
[58] KATO H, HORI M, KONTA R, et al. Construction of Z–scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation[J]. Chem Lett, 2004, 33(10): 1348–1349.
[59] YOUREY J E, KURTZ J B, BARTLETT B M. Water oxidation on a CuWO4–WO3 composite electrode in the presence of [Fe(CN)6]3–: Toward solar Z–scheme water splitting at zero bias[J]. J Phys Chem C, 2012, 116(4): 3200–3205.
[60] SASAKI Y, KATO H, KUDO A. [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z–scheme photocatalyst system[J]. J Am Chem Soc, 2013, 135(14): 5441–5449.
[61] KUDO A. Z–scheme photocatalyst systems for water splitting under visible light irradiation[J]. MRS Bull, 2011, 36(01): 32–38.
[62] SASAKI Y, NEMOTO H, SAITO K, et al. Solar water splitting using powdered photocatalysts driven by Z–schematic interparticle electron transfer without an electron mediator[J]. J Phys Chem C, 2009, 113(40): 17536–17542.
[63] SIVULA K, GRATZEL M. Tandem photoelectrochemical cells for water splitting[C]. //LEWERENZ H, PETER L ed. Photoelectrochemical Water Splitting: Materials, Processes and Architectures. London: Royal Society of chemistry., 2013 (9): 83–108.
[64] ZHOU P, YU J, JARONIEC M. All–Solid–State Z–Scheme Photocatalytic Systems[J]. Adv Mater, 2014, 26(29): 4920–4935.
[65] WANG X, PENG K Q, HU Y, et al. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation[J]. Nano Lett, 2013, 14(1): 18–23.
[66] QI X, She G, Huang X, et al. High–performance n–Si/α–Fe2O3core/shell nanowire array photoanode towards photoelectrochemical water splitting[J]. Nanoscale, 2014, 6(6): 3182–3189.
[67] CORIDAN R H, ARPIN K A, BRUNSCHWIG B S, et al. Photoelectrochemical behavior of hierarchically structured Si/WO3 core–shell tandem photoanodes[J]. Nano Lett, 2014, 14(5): 2310–2317.
[68] SHANER M R, FOUNTAINE K T, ARDO S, et al. Photoelectrochemistry of core–shell tandem junction n–p+–Si/n–WO3 microwire array photoelectrodes[J]. Energy Environ Sci, 2014, 7(2): 779–790.
[69] YANG Y, WANG J, ZHAO J, et al. Photochemical charge separation at particle interfaces: the n–BiVO4–p–silicon system[J]. ACS Appl Mater Interface, 2015, 7(10): 5959–5964.
[70] LIU C, DASGUPTA N P, YANG P. Semiconductor nanowires for artificialphotosynthesis[J]. Chem Mater, 2013, 26(1): 415–422.
[71] MAYER M T, LIN Y, YUAN G, et al. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite[J]. Accounts Chem Res, 2013, 46(7): 1558–1566.
[72] WANG W, CHEN S, YANG P X, et al. Si: WO3 heterostructure for Z–scheme water splitting: an ab initio study[J]. J Mater Chem A, 2013, 1(4): 1078–1085.
[73] CORIDAN R H, SHANER M, WIGGENHORNC, et al. Electrical and photo electrochemical properties of WO3/Si tandem photoelectrodes[J]. J Phys Chem C, 2013, 117(14): 6949–6957.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com