首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
石墨烯基环氧树脂复合热界面材料的制备及热性能
作者:唐波 许继星 黄维秋 
单位:常州大学 江苏省油气储运技术重点实验室 江苏 常州 213016 
关键词:热界面材料 石墨烯 Kapitza热阻 环氧树脂 表面官能团 
分类号:TB332
出版年,卷(期):页码:2017,45(1):0-0
DOI:10.14062/j.issn.0454-5648.2017.01.18
摘要:

采用氧化还原法制备的石墨烯作为改性材料,研究石墨烯的含量及其还原程度对环氧树脂热导率的影响,并进一步测定复合热界面材料的热导率在高温下的稳定性。结果表明:石墨烯可以大幅提高环氧树脂的热导率,加入质量分数为15%的石墨烯可以使环氧树脂的热导率提高2 300%。石墨烯表面的剩余官能团对产物的热导率也有显著的影响,表面官能团可以充当声子输运通道并减小界面间的Kapitza热阻,但是过多的表面官能团会减小石墨烯的本征热导率。经过优化还原时间,复合热界面材料的热导率得到进一步的提高。另外,通过优化石墨烯的还原程度及尺寸,提高了复合材料产物热导率在高温下的稳定性。
 

Reduced graphene oxide (RGO) nanosheets were adopted as a modifier to improve the thermal conductivity of epoxy resin (ER), and the influences of the content and reduction degree of the RGO nanosheets on the thermal properties of thermal interface materials (TIMS) were investigated. The results demonstrate that the thermal conductivity increases 2 300% after adding 15% RGO nanosheets into the ER. Moreover, the thermal conductivity of the resultant composite is closely related to the residual amount of surface functional groups of the RGO. The presence of surface functional groups can act as a bridge to improve the phonon transport between graphene basic plane and ER (which promotes the better match of phonon DOS between the RGO and ER, and reduces the Kapitza resistance resulting from phonon scattering at the interface). However, excessive surface functional groups could reduce the intrinsic thermal conductivity of graphene. The thermal conductivity of TIMs increases, and the thermal property of the TIMs at high temperatures becomes more stable at optimized average size and reduction time of the RGO.

基金项目:
国家自然科学基金项目(51506012),江苏省高校“青蓝工程”计划项目(SCZ1409700002)、江苏省科技成果转化专项资金项目(BA2015166)、江苏省自然科学基金项目(BK20150266)、常州市基础研究科技资助计划项目(CJ20159032)。
作者简介:
唐 波(1983—),男,博士,讲师。
参考文献:

[1]LIN W, MOON K S, WONG C P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube polymernanocomposites: toward applications as thermal interface materials[J]. Adv Mater, 2009, 21(23): 2421–2424.
[2]KAPPAGANTULA K, PANTOYA M L. Experimentally measured thermal transport properties of aluminum–polytetra fluoroethy lenenanocomposites with graphene and carbon nanotube additives[J]. Int J Heat Mass Transf, 2012, 55: 817–824.
[3]SIM L C, RAMANAN S R, ISMAIL H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermo Chim Acta, 2005, 430(1/2): 155–165.
[4]JAGANNADHAM K. Thermal conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated grapheneplatelets[J]. Metal Mater Trans B, 2012, 43(2): 316–324.
[5]GALLEGO M M, VERDEJO R, KHAYET M, et al. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids
and nanocomposites[J]. Nanoscale Res Lett, 2011, 6: 610–616.
[6]SARVAR F, WHALLEY D C, CONWAY PP. Thermal interface materials–a review of the state of the art[C]//Proc Electron Syst Integr Technol Conf(IEEE 1–4244–0553), 2006, 2: 1292−1302.
[7]PRASHER R S, CHANG J Y, SAUCIUC I, et al. Nano and micro technology–based next–generation package–level cooling solutions[J]. Intel Tech J, 2005, 9: 285−296.
[8]FELBA J. Thermally conductive nanocomposites[M]. New York: Springer, 2010: 277−314.
[9]SHAHI K M F, BALANDIN A A. Graphene−multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Lett, 2012, 12(2): 861−867.
[10]BONNET P, SIREUDE D, GARNIER B, et al. Thermal properties and percolation in carbon nanotube–polymer composites[J]. Appl Phys Lett, 2007, 91(20): 201910–201912.
[11]HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339–1339.
[12]WANG Y, LI Y M, TANG L H, et al. Application of graphene–modified electrode for selective detection of dopamine[J]. Electron Chem Commun, 2009, 11(4): 889–892.
[13]KONATHAM D, STRIOLO A. Thermal boundary resistance at the graphene–oil interface[J]. Appl Phys Lett, 2009, 95(16): 163105– 163107.
[14]SHENOGINA N, SHENOGIN S, XUE L, et al. On the lack of thermalpercolation in carbon nanotube composites[J]. Appl Phys Lett, 2005, 87(13): 133106–133108.
[15]BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Mater, 2011, 10(8): 569–581.
[16]TANG B, HU G X, GAO H Y. Application of graphene materials as filler to improve thermal transport property of epoxy resin for thermal interface materials[J]. Int J Heat Mass Transfer, 2015, 85: 420–429.
[17]KONATHAM D, BUI K N D, PAPAVASSILIOU D V, et al. Simulation insights into thermally conductive graphene–based nanocomposites[J]. Mol Phys, 2011, 109(1): 97−111.
[18]GHOSH S, NIKA D L, POKATILOV E P, et al. Heat conduction in graphene: experimental study and theoretical interpretation[J]. New J Phys, 2009, 11(9): 095012–095020.
 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com