首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
前驱体热解制备多孔SiOC复合材料及性能
作者:潘建梅 严学华 程晓农 张成华 
单位:江苏大学材料科学与工程学院 江苏 镇江 212013 
关键词:硅氧碳复合材料 聚合物前驱体 热解 性能 
分类号:TB383
出版年,卷(期):页码:2016,44(12):1740-1747
DOI:10.14062/j.issn.0454-5648.2016.12.11
摘要:

 用木粉浸渍聚合物前驱体有机硅树脂,然后在Ar气氛中高温裂解合成多孔SiOC复合材料。采用热重差热分析、X射线衍射、红外光谱、Raman光谱、扫描电子显微镜、氮吸附法等对样品的物相组成、形貌及微观结构进行了表征,并用四探针法检测样品的电学性能。结果表明:SiOC复合材料由SiOC相、α-石英、方石英、β-SiC和类石墨碳组成。随着烧结温度的升高,样品的Si—O吸收峰强度逐渐减弱,Si—C吸收峰强度逐渐增强,样品的石墨化程度先减小后增大,比表面积逐渐增大。当烧结温度达1 400 ℃时,样品具有较高的比表面积(187.5 m2/g)及较低的体积电阻率(0.013 Ω·cm),且在Ar气氛中表现出较好的热稳定性。

 

The porous SiOC composites were synthesized with wood powder impregnated with silicone resin as a polymeric precursor via pyrolysis in Ar atmosphere. The products were characterized by using thermogravimetry-differential thermal analysis, X-ray diffraction, Fourier transformation infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and nitrogen adsorption method, respectively. The electrical performance of the specimens was analyzed by a four-point probe method. The results show that the SiOC composite consists of SiOC phase, α-quartz, cristobalite, β-SiC and graphite-like carbon. The intensity of absorption peak for Si–O bonds decreases, the intensity of absorption peak for Si–C bonds increases, the graphitization degree of the samples firstly decreases and then increases, and the specific surface area of the samples increases with increasing the sintering temperature. The sample prepared at 1 400 ℃ possesses a higher specific surface area (i.e., 187.5 m2/g) and a lower volume resistivity (i.e., 0.013 Ω·cm), and exhibits a superior thermal stability in Ar atmosphere.

 
基金项目:
国家自然科学基金(51502116);江苏省自然科学基金(BK20140557);中国博士后科学基金(2016T90425);中国博士后面上基金(2015M571682);江苏省博士后基金(1402020A);江苏大学高级专业人才科研启动基金(14JDG056)。
作者简介:
潘建梅(1985—),女,博士,讲师。
参考文献:
[1]BIASETTO L, FRANCIS A, PALADE P, et al. Polymer-derived microcellular SiOC foams with magnetic functionality[J]. J Mater Sci, 2008, 43(12): 4119–4126.
[2]HOJAMBERDIEV M, PRASAD R M, MORITA K, et al. Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water[J]. Appl Catal B: Environ, 2012, 115–116: 303–313.
[3]COLOMBO P, HELLMANN J R, SHELLEMAN D L. Mechanical properties of silicon oxycarbide ceramic foams[J]. J Am Ceram Soc, 2001, 84(10): 2245–2251.
[4]COLOMBO P, HELLMANN J R, SHELLEMAN D L. Thermal shock behavior of silicon oxycarbide foams[J]. J Am Ceram Soc, 2002, 85(9): 2306–2312.
[5]IONESCU E, LINCK C, FASEL C, et al. Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability[J]. J Am Ceram Soc, 2010, 93(1): 241–250.
[6]ZESCHKY J, HÖFNER T, ARNOLD C, et al. Polysilsesquioxane derived ceramic foams with gradient porosity[J]. Acta Mater, 2005, 53(4): 927–937.
[7]MARTíNEZ-CRESPIERA S, IONESCU E, KLEEBE H J, et al. Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane[J]. J Eur Ceram Soc, 2011, 31(5): 913–919.
[8]PRADEEP V S, AYANA D G, GRACZYK-ZAJAC M, et al. High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries[J]. Electrochim Acta, 2015, 157: 41–45.
[9]刘卫, 黎阳, 陈璐. 聚碳硅烷低温制备碳化硅泡沫陶瓷[J]. 硅酸盐学报, 2011, 39(11): 1763–1767.
LIU Wei, LI Yang, CHEN Lu. J Chin Ceram Soc, 2011, 39(11): 1763–1767.
[10]VAKIFAHMETOGLU C, MENAPACE I, HIRSCH A, et al. Highly porous macro- and micro-cellular ceramics from a polysilazane precursor[J]. Ceram Int, 2009, 35(8): 3281–3290.
[11]马彦, 马青松, 陈朝辉. 先驱体转化法制备多孔陶瓷的发展现 状[J]. 材料工程, 2007, 3: 62–66.
MA Yan, MA Qingsong, CHEN Chaohui. Mater Eng (in Chinese), 2007, 3: 62–66.
[12]SCHMIDT H, KOCH D, GRATHWOHL G, et al. Micro-macro porous ceramics from preceramic precursors[J]. J Am Ceram Soc, 2001, 84(10): 2252–2255.
[13]BIASETTO L, PEÑA-ALONSO R, SORARÙ G D, et al. Etching of SiOC ceramic foams[J]. Adv Appl Ceram, 2008, 107(2): 106–110.
[14]FAN T X, CHOW S K, ZHANG D. Biomorphic mineralization: from biology to materials[J]. Prog Mater Sci, 2009, 54(5): 542–659. 
[15]ZHOU H, LI X F, FAN T X, et al. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis[J]. Adv Mater, 2010, 22(9): 951–956. 
[16]LI X F, FAN T X, ZHOU H, et al. Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates[J]. Adv Funct Mater, 2009, 19(1): 45–56. 
[17]WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971–1975.
[18]VAKIFAHMETOGLU C. Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review[J]. Adv Appl Ceram, 2011, 110(4): 188–204.
[19]PAN J M, YAN X H, CHENG X N, et al. Preparation of SiC nanowires-filled cellular SiCO ceramics from polymeric precursor[J]. Ceram Int, 2012, 38(8): 6823–6829.
[20]SAHA A, RAJ R. Crystallization maps for SiCO amorphous ceramics[J]. J Am Ceram Soc, 2007, 90(2): 578–583.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com