首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
表面状态对硬化水泥石显微硬度及统计分布的影响
作者:蒋雁1 党玉栋2 3 钱觉时4 李昕成2 3 石鲜明5 杨正宏1 
单位:1. 同济大学 先进土木工程材料教育部重点实验室 上海201804 2. 云南省建筑科学研究院 昆明650223 3. 云南省建筑结构与新材料企业重点实验室 昆明650223 4. 重庆大学材料科学与工程学院 重庆400045 5. 华盛顿州立大学土木与环境工程系 普尔曼99164 美国 
关键词:硬化水泥石 显微硬度 制样方法 抛光 饱和程度 统计分布 
分类号:TU528
出版年,卷(期):页码:2017,45(2):212-219
DOI:10.14062/j.issn.0454-5648.2017.02.06
摘要:

 研究了硬化水泥石样品表面平整度和含水状态对其微观形貌、显微硬度及统计分布的影响。结果表明:硬化水泥石显微硬度数据呈明显的离散分布特征,提高样品表面平整度可在一定程度上降低显微硬度数据的离散性,但对硬化水泥石进行有限次的显微硬度测试时,不论抛光与否,数据均不符合正态分布,而更加符合3因数对数正态分布。采用3因数对数正态分布对相同原材料、配比、养护和制样方法制备的硬化水泥石显微硬度进行统计分析后发现,饱和面干硬化水泥石的显微硬度明显低于干燥状态的样品。因此,当测试水泥基材料的显微硬度时,必须要保持待测样品表面具有相同的平整度和水饱和程度,并应采用统计方法对数据进行比较和分析。

 

 Influences of smoothness and saturation level of hardened cement paste (HCP) on its microscopic morphologies, microhardness and statistic distribution were investigated. The results indicate that the measured microhardness values are subject to considerable variability, and the improvement of the sample smoothness can slightly lead to the less variability of microhardness values. However, for limited microhardness measurements, the microhardness data are not normally-distributed, but fit best with a 3-parameter lognormal model. For the same HCP samples with different water saturation levels, it is clear that the microhardness of  Saturated surface-dried (SSD[补充全称]) samples is lower than that of oven-dried samples after quantitatively comparing the statistical parameters to the best goodness-of-fit of 3-parameter lognormal distribution. It is essential to keep the sample with the same surface condition, and it is necessary to statistically analyze the microhardness of cement based materials.

 
基金项目:
国家自然科学基金(51302191,51132010)。
作者简介:
蒋 雁(1991—),女,硕士研究生。
参考文献:

 [1]Shi C, Xie P. Interface between cement paste and quartz sand in alkali-activated slag mortars[J]. Cem Concr Res, 1998, 28(6): 887–896.

[2]Feng D C, Xie N, Gong C W, et al. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective[J]. Ind Eng Chem Res, 2013, 52: 11575−11582. 
[3]胡曙光, 王发洲, 丁庆军. 轻集料与水泥石的界面结构[J]. 硅酸盐学报, 2005, 33(6): 713–717.
HU Shuguang, WANG Fazhou, DING Qingjun. J Chin Ceram Soc, 2005, 33(6): 713–717.
[4]Xuan D X, Shui Z H, Wu S P. Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete[J]. Constr Build Mater, 2009, 23: 2631–2635.
[5]Sato T, Beaudoin J J. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials[J]. Adv Cem Res, 2010, 23 (1): 1–29.
[6]党玉栋, 钱觉时, 曲艳召, 等. 内养护对不同细度水泥制备的砂浆性能的影响[J]. 硅酸盐学报, 2012, 40(5): 657–663.
DANG Yudong, QIAN Jueshi, QU Yanzhao, et al. J Chin Ceram Soc , 2012, 40(5): 657–663.
[7]ERDEM S, DAWSON A R, THOM N H. Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates[J]. Cem Concr Res, 2012, 42(2): 447–458.
[8]高辉, 张雄, 张永娟. 混凝土气孔结构对其强度及界面过渡区的影响[J]. 同济大学学报: 自然科学版, 2014, 42(5): 751–755.
GAO Hui,ZHANG Xiong,ZHANG Yongjuan. J Tongji univ: Nat Scie, 2014, 42(5): 751–755.
[9]Xie N, Muthumani A, Dang Y, et al. Deicer Impacts on Concrete Bridge Decks: A Comparative Study of Field Cores from Potassium Acetate and Sodium Chloride Environments[C]// ZHAO S, LIU J and ZHANG X ed, Innovative Materials and Design for Sustainable Transportation Infrastructure, Alaska: American Society of Civil Engineers, 2015: 42–57.
[10]CEN. EN ISO 4516-2002. Metallic and other inorganic coatings - Vickers and Knoop microhardness tests[S]. EN: CEN, 2002.
[11]中华人民共和国冶金工业部. GB/T 4342—91金属显微维氏硬度试验方法[S]. 北京: 中国标准出版社, 1991.
Ministry of Metallurgical Industry of the PRC. GB/T 4342—21 Standard method of Vickers microhardness tests of Metal. Beijing: China Standards Press, 1991
[12]ASTM. ASTM C1327. Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics[S]. US: ASTM, 1999.
[13]Lin C K, Berndt C C. Statistical analysis of microhardness variations in thermal spray coatings[J]. J Mater Sci, 1995, 30(1): 111–117.
[14]SCHNEIDER J M, BIGERELLE M, LOST A. Statistical analysis of the Vickers hardness[J]. Mater Sci Eng, A, 1999, 262 (1): 256–263.
[15]FACTOR M, ROMAN I. Vickers microindentation of WC–12% Co thermal spray coating: Part 1: statistical analysis of microhardness data[J]. Surf Coat Technol, 2000, 132(2): 181–193.
[16]ASTM. ASTM E384–99. Standard Test Method for Microindentation Hardness of Materials[S]. US: ASTM, 1999.
[17]Montgomery D C, Runger G C. Applied Statistics and Probability for Engineers 6th edition[M]. London: Wiley, 2014.
[18]Croarkin C, Tobias P. NIST/SEMATECH e-handbook of statistical methods. National Institute of Standards and Technology [EB/OL], (2012–04–20) [2016–08–112]. http://www.itl.nist.gov/ div898/handbook.
[19]Michalopoulos A P, Triandafilidis G E. Influence of water on hardness, strength and compressibility of rock[J]. Bull Assoc Eng Geol, 1976, 13: 1–12.
[20]Zheng J, Weng L Q, Shi M Y, et al. Effect of water content on the nanomechanical properties and microtribological behavior of human tooth enamel[J]. Wear, 2013, 301(1/2): 316–323.
[21]Auvray C, Arnold G, Armand G. Experimental study of elastic properties of different constituents of partially saturated argillite using nano-indentation tests[J]. Eng Geol, 2015, 191(29): 61–70.
[22]BALAKRISHNAN N, CHEN W S. Handbook of tables for order statistics from lognormal distributions with applications[M]. New York: Springer, 1999:5–6.
[23]Zhou X H, GAO S. Confidence Intervals for the log‐normal mean[J]. Stat Med, 1997, 16(7): 783–790.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com