首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Yb3+-Er3+共掺杂GdOCl粉末的制备及上转换发光性能
作者:张学建1 2 靳军1 2 胡洪亮1 2 黄德馨1 2 李首胤3 
单位:1. 吉林建筑大学 长春 130118 2. 长春市结构与功能材料工程研究中心 长春 130118 3. 南昌航空大学 南昌 330063 
关键词:氯氧化钆 固相法 粉体 上转换发光 
分类号:O482.31
出版年,卷(期):页码:2017,45(2):282-287
DOI:10.14062/j.issn.0454-5648.2017.02.16
摘要:

 采用高温固相合成法制备了Er,Yb:GdOCl粉体,并分别利用X射线衍射、扫描电子显微镜和荧光分析研究荧光粉的结构、形貌和发光性能。结果表明:四方Er,Yb:GdOCl粉体可以通过1 000 ℃固相反应2 h合成。980 nm红外光激发下,Er,Yb:GdOCl样品在520~560 nm区域内(对应于Er3+的2H11/2和4S3/2→4I15/2跃迁)和650~670 nm区域内(对应于Er3+的4F9/2→4I15/2跃迁)显示出强红光发射线。随着Er3+掺杂浓度增加,红绿光的发射强度先增强后减弱,证明了Er,Yb:GdOCl中的能量迁移。讨论了Yb3+和Er3+之间可能的红光发射和能量迁移机制。

 

 Er,Yb:GdOCl powder was prepared by a high-temperature solid-phase method. The structure, morphology and optical properties were characterized by X-ray diffraction, scanning electron microscopy and fluorescence analysis, respectively. The results indicate that Er,Yb:GdOCl powder can be obtained after calcination for 2 h of solid state reaction at 1 000 ℃. Er,Yb:GdOCl samples in the 520?560 nm region (corresponding to the 2H11/2 and 4S3/2→4I15/2 transitions of Er3+) and within the 650–670 nm region (corresponding to the 4F9/2→4I15/2 transition of Er3+) show intense red light emission lines under 980 nm infrared light excitation. The emission intensity of the red and green light firstly increases and then decreases gradually with increasing Er3+ doping concentration, showing the energy migration of Er,Yb:GdOCl. In addition, the possible mechanism of red light emission and energy transfer between Yb3+ and Er3+ was also dicussed.

 
基金项目:
吉林省经济结构战略调整引导资金专项(2015Y069)和长春市科技计划(2014228)资助。
作者简介:
张学建(1975—),男,博士,教授。
参考文献:
[1] Do Y R, Bae J W, Kim Y, et al. Preparation and optical properties of SrGa2S4:Eu phosphor[J]. Bull Korean Chem Soc, 2000, 21(3): 295–299.
[2] Do Y R. Cathodoluminescence properties of SrY2S4:Eu phosphor for application in field emission display[J]. J Electrochem Soc, 2000, 147(4): 1597–1600.
[3] Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxides[J]. Phys Rev Lett, 1969, 23(11): 579–581.
[4] Garces N Y, Wang L, Bai L. Role of copper in the green luminescence from ZnO crystals[J]. Appl Phys Lett, 2002, 81(4): 622–624.
[5] LIU Wang, ZHAO Shuyan, ZHAO Qianqian, et al. J Chin Ceram Soc, 2016, 44(6): 855–861.
[6] HUNAG Qingming, YU Jianchang. J Chin Ceram Soc, 2011, 39(7): 1170–1174.
[7] Park Sangmoon, Cho So-Hye. Spectral-converting behaviors of Er3+ and Er3+–Yb3+ doped YOCl phosphors[J] J. Alloy Compd, 584(2014): 524–529.
[8] Li Y, Pan Y, Chen H M, et al. VUV–UV luminescence of Ce3+, Tb3+, Eu3+, and Dy3+ doped GdOCl[J]. Opt Mater, 2015, 50: 184–187.
[9] Park Sangmoon, Cho So-Hye. Spectral-converting study of La1-m-nErmYbnOCl (m=0.001–0.2, n=0–0.1) phosphors[J]. J Lumin, 2014, 153: 90–95.
[10] Kenneth R K, SARBAJIT B. Oriented electrophoretic deposition of GdOCl nanoplatelets[J]. J Phys Chem B, 2013, 117: 1585–1591.
[11] LI G G, HOU Z Y, PENG C, et al, “Electrospinning Derived One-Dimensional LaOCl:Ln3+ (Ln=Eu/Sm,Tb,Tm) Nanofibers, Nanotubes and Microbelts with Multicolor-Tunable Emission Properties”[J]. Adv Funct Mater, 2010, 20: 3446–3456.
[12] SHAO Liming, JING Xiping. Chin J Inorg Chem, 2014, 30(10): 2295–2300.
[13] Hölsä J, Säilynoja E, Lamminmäki R J, et al. Crystal field energy level scheme of Er3+ in GdOCl Parametric analysis[J]. J Chem Soc Faraday Trans, 1997, 93(13): 2241–2246.
[14] Kozhan T M, Kusnetsova V V, Pershukevich P R, et al. Concentration dependence of IR luminescence quantum yield in GdOCl:Ho3+[J]. Spectrochimica Acta Part A: Mol Biomol Spectrosc, 1999, 55(7): 1407–1409.
[15] Areva S, Hölsä J, Lamminmäki R J, et al. Excited state absorption processes in Sm3+ doped GdOCl[J]. J Alloy Compd, 2000, 300: 218–223.
[16] Bungenstock C, Tröster T, Holzapfel W B, et al. Energy levels of Pr3+: GdOCl under pressure[J]. J Phys: Condens, 2000, 12(30): 6959.
[17] Hölsä J, Lamminmäki R J, Lastusaari M, et al. Simulation of the Gd3+ energy level scheme in GdOCl[J]. J Alloy Compd, 2001, 323: 811–815.
[18] Li Y, Wei X, Yin M. Synthesis and upconversion luminescent properties of Er3+ doped and Er3+–Yb3+ codoped GdOCl powders[J]. J Alloy Compd, 2011, 509(41): 9865–9868.
[19] Kong Q, Wang J, Dong X, et al. Synthesis and luminescence properties of LaOCl:Nd3+ nanostructures via combination of electrospinning with chlorination technique[J]. Mater Express, 2014, 4(1): 13–22.
[20] Li Y, Wei X, Tong B, et al. Effect of Er3+ concentration on the upconversion luminescence of GdOCl:Er3+ powders with excitation of 514.5 nm[J]. Mater Lett, 2012, 80: 184–186.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com