首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
介孔材料麦羟硅钠石吸附Pb2+的行为及机理
作者:戈明亮 杜明艺 王雁武 
单位:华南理工大学 聚合物成型加工工程教育部重点实验室 聚合物新型成型装备国家工程研究中心 广州 510640 
关键词:麦羟硅钠石 介孔材料 吸附 铅离子 
分类号:O647
出版年,卷(期):页码:2017,45(1):37-45
DOI:10.14062/j.issn.0454-5648.2017.01.06
摘要:
对水热合成法制备的介孔材料麦羟硅钠石(magadiite)对重金属离子Pb2+吸附性能进行了探索,考察了吸附过程中麦羟硅钠石的投加量、溶液pH值、吸附时间和Pb2+初始浓度等因素对Pb2+去除率和吸附量的影响,并运用BET法计算麦羟硅钠石的比表面积和平均孔径,对吸附剂吸附前后的结构进行表征,并分析了吸附行为和机理。结果表明:麦羟硅钠石的平均孔径为19 nm,平均孔容约为0.087 6 cm3/g;麦羟硅钠石对Pb2+的吸附量和去除率随着溶液pH值的增大而增大,当pH值大于5时,吸附量和去除率趋于稳定;在优化条件下,麦羟硅钠石对Pb2+的最大去除率为93.2%。用准一级和准二级吸附动力学模型以及动边界模型拟合麦羟硅钠石吸附Pb2+的吸附过程,结果表明:准二级动力学模型更适合描述其吸附过程,且膜扩散过程和颗粒扩散过程为吸附过程的速率控制步骤。另外,利用Langmuir和Freundlich等温线模型分析表明,Langmuir模型能很好地描述麦羟硅钠石对Pb2+的吸附过程,由其获得的最大吸附量为54.26 mg/g,吸附机理兼有物理吸附和化学吸附,但以化学吸附为主。
 

 The adsorption performance of Pb2+ onto the mesoporous material magadiite in aqueous solution was investigated. The adsorption quantity and removal rate of Pb2+ onto magadiite were examined at various parameters like the dosage of magadiite, pH value of the solution, adsorption time and the initial concentration of Pb2+. The specific surface area of the magadiite was determined via the Brunauer-Emmett-Teller (BET) specific surface area measurement. The structure of magadiite before and after the adsorption was characterized, and the adsorption mechanism was analyzed. The results show that the average pore size and the average pore volume are 19 nm and 0.087 6 cm3/g, respectively. The adsorption quantity and removal rate of Pb2+ increase with the increase of pH value, and are stable when pH>5. The maximum removal rate of Pb2+ under the optimal condition is 93.2%. The adsorption kinetic was discussed based on the pseudo-first-order, pseudo-second-order kinetic models and moving boundary models, indicating that the adsorption process for Pb2+ follows the pseudo-second-order kinetic model and the film diffusion and particle diffusion are the speed control steps. The adsorption isotherm data were analyzed by the Langmuir and the Freundlich isotherm models, respectively. The results show that the adsorption process follows the Langmuir isotherm model and the Langmuir maximum adsorption quantity of magadiite for Pb2+ is 54.26 mg/g. The adsorption mechanism should be both physical and chemical adsorptions (mainly the chemical adsorption).

 
基金项目:
广东省自然科学基金项目(2016A030313520)。
作者简介:
戈明亮(1970—),男,博士,副教授。
参考文献:
[1] Arshadi M, Soleymanzadeh M, Salvacion J W L, et al. Nanoscale zero-valent iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism[J]. J Colloid Interf Sci, 2014, 426: 241–251. 
[2] LUO SL, XU XL, ZHOU GY, et al. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater[J]. J Hazard Mater, 2014, 274: 145–155.
[3] HOSSEINI BA, KARIMZADEH M, SARWGHADI M, et al. Use of a selective extractant-impregnated resin for removal of Pb(II) ion from waters and wastewaters: Kinetics,equilibrium and thermodynamic study [J]. Chem Eng Res Des, 2014, 92(3): 581–591. 
[4] IBRAHEEM OA, ALI M H, SALAH MS, et al. Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite [J]. Sep Purif Technol, 2011, 83: 38–44. 
[5] 彭秀达, 刘红, 秦雄, 等. 十六烷基三甲基溴化铵对膨润土负载纳米铁去除水中铬的增强作用[J]. 硅酸盐学报, 2014, 42(4): 514–521. 
PENG Xiuda, LIU Hong, QIN Xiong, et al. J Chin Ceram Soc, 2014, 42(4): 514–521.
[6] DU E L, YU S M, ZUO L M, et al. Pb(II) sorption on molecular sieve analogues of MCM-41 synthesized from kaolinite and montmorillonite [J]. Appl Clay Sci, 2011, 51: 94–101. 
[7] Hassani A, Khataee A, Karaca S, et al. Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: Kinetic and isotherm studies[J]. Environ Technol, 2015, 36(24): 3125–3135. 
[8] RAHMAN A, KISHIMOTO N, URABE. Adsorption characteristics of clay adsorbents-sepiolite, kaolin and synthetic talc - for removal of Reactive Yellow 138:1 [J]. Water Environ J, 2015, 29(3): 375–382. 
[9] MATLOK M, PETRUS R, WARCHOL JK. Equilibrium study of heavy metals adsorption on kaolin [J]. Ind Eng Chem Res, 2015, 637: 6975–6984.
[10] ZHOU Q, GAO Q, LUO W J. One-step synthesis of amino- functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater [J]. Colloids Surf A: Physicochem Eng Aspects, 2015, 470: 248–257.
[11] DE Y, OCHI N, OGAWA M. Effective and selective adsorption of zn2+ from seawater on a layered silicate [J]. Angew Chem Int Ed, 2011, 50: 654–656. 
[12] GUERRA D L, PINTO A A, AIROLDI C, et al. Adsorption of arsenic(III) into modified lamellar Na-magadiite in aqueous medium—Thermodynamic of adsorption process [J]. J Solid State Chem, 2008, 181: 3374–3379. 
[13] GUERRA D L, PINTO A A, SOUZAB J A, et al. Kinetic and thermodynamic uranyl (II) adsorption process into modified Na-magadiite and Na-kanemite [J]. J Hazardous Mater, 2009, 166: 1550–1555. 
[14] 戈明亮, 王雁武,陈萌. 麦羟硅钠石对水中Zn2+的吸附性能研究[J]. 中国环境科学, 2015, 35(7): 2065–2071. 
GE Mingliang, WANG Yanwu, CHEN Meng. China Environmental Science, 2015, 35(7): 2065–2071. 
[15] 戈明亮, 陈萌. 麦羟硅钠石的制备与表征[J]. 硅酸盐学报, 2013, 42(12): 1704–1708. 
GE Mingliang, CHEN Meng. J Chin Ceram Soc, 2013, 42(12): 1704–1708. 
[16] Thiesen P H, Beneke K, Lagaly G.. Silylation of a crystalline silicic: An MAS NMR and porosity study [J]. J Mater Chem, 1985, 22: 639–650. 
[17] WANG Y R, WANG S F, CHANG L C. Hydrothermal synthesis of magadiite [J]. Appl Caly Sci, 2006, 33(1): 73–77. 
[18] MIYAMOTO N, KAWAI R, KURODA K. Intercalation of a cationic cyanine dye into the layer silicate magadiite [J]. Appl Caly Sci, 2001, 19: 39–46.
[19] SHARIFIPOUR F, HOJATI S, LANDI A, et al. Kinetics and thermodynamics of lead adsorption from aqueous solutions onto iranian sepiolite and zeolite [J]. Int J Environ Res, 2015, 9(3): 1001–1010.
[20] EYPERT B C, SAUZE E, PELLETIER M, et al. Hydration mechanisms and swelling behavior of Na-magadiite [J]. Chem Mater, 2001, 13: 1480–1486. 
[21] 袁姗姗, 黎振源, 潘志东, 等. 纳米伊/蒙黏土吸附脱除水中Cu2+和Cd2+离子[J]. 硅酸盐学报, 2016, 44(1): 43–49. 
YUAN Shanshan, LI Zhenyuan, PAN Zhidong, et al. J Chin Ceram Soc, 2016, 44(1): 43–49. 
[22] HUANG Y, JIANG Z, SCHWIEGER W. Vibration srectroscopic studies of layered silicates [J]. Chem Mater, 1999, 11(5): 1210–1217. 
[23] LI Y, WANG J D, WANG X J, et al. Adsorption−desorption of Cd(II) and Pb(II) on Ca-montmorillonite[J]. Ind Eng Chem Res, 2012, 51:  6520–6528. 
[24] GUERRA D J L, MELLO I, RESENDE R, et al. Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: Equilibrium, kinetic, pH, and thermodynamic effects [J]. Water Res Ind, 2013, 4: 32–50. 
[25] DUMAN O, TUNC S, POLAT T G.. Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent [J]. Micropor Mesopor Mater, 2015, 210: 176–184. 
[26] MACEDO T R, AIROLDI C. Host lamellar silicic acid magadiite for some heterocyclic amine inclusions and quantitative calorimetric data [J]. Micropor Mesopor Mater, 2006, 94: 81–88. 
[27] SHU Q Z, WAN G H. Adsorption behavior of Pb(II) on montmorillonite[J], Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 320: 92–97.
[28] BI Y F, LAMBERT J F, MILLOT Y, et al. Relevant parameters for obtaining high-surface area materials by delamination of magadiite, a layered sodium silicate [J]. J Mater Chem, 2011, 21: 18403–18411. 
[29] MATSUO Y, TAKAMATSU T. Suppression of thermal quenching of fluorescence fromrhodamine dyes attached to silylatedmagadiite containing perfluoroalkyl groups [J]. J Fluorine Chem, 2013, 156: 220–223.
[30] DAWODU F A, AKPOMIE K G.. Simultaneous adsorption of Ni(Ⅱ) and Mn(Ⅱ) ions from aqueous solution unto a Nigerian kaolinite [J]. J Mater Res Technol, 2014, 3(2): 129–141. 
[31] SARI A, TUZEN M. Cd(Ⅱ) adsorption from aqueous solution by raw and modified kaolinite [J]. Appl Clay Sci, 2014, 88: 63–72.
[32] Atta A M, AlLohedan H A, ALOthman Z A, et al. Characterization of reactive amphiphilic montmorillonite nanogels and its application for removal of toxic cationic dye and heavy metals water pollutants [J]. J Ind Eng Chem, 2015, 31: 374–384.   
[33] 姚青旭, 贾铭椿, 门金凤. 一种硅基介孔材料的制备及其对低浓度 Co2+的选择性吸附 [J]. 硅酸盐学报, 2012, 40(10): 1530–1536. 
YAO Qingxu, JIA Mingchun, MEN Jinfeng. J Chin Ceram Soc, 2012, 40(10): 1530–1536. 
[34] 熊洁羽, 王国军, 刘玉海, 等. 三维孔道硅基介孔材料对Cd2+的吸附特性[J]. 硅酸盐学报, 2013, 41(9): 1290–1295. 
XIONG Jieyu, WANG Guojun, LIU Yuhai, et al. J Chin Ceram Soc, 2013, 41(9): 1290–1295. 
[35] Jacques, R A, Bernardi R, Caovila M, et al. Removal of Cu(II), Fe(III) and Cr(III) from aqueous solution by aniline grafted silica gel[J]. Sep Sci Technol, 2007, 42: 591–598.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com