[1] CHEN C, MA W, ZHAO J. Semiconductor– mediated photodegradation of pollutants under visible–light irradiation[J]. Chem Soc Rev, 2010, 39(11): 4206–4219.
[2] 单爽, 杨占旭. 四角星形BiVO4/Bi2O3催化剂的制备及性能[J]. 无机化学学报, 2016, 32(4): 649–654.
SHAN Shuang, YANG Zhanxu. Chin J Inorg Chem(in Chinese), 2016, 32(4): 649–654.
[3] WU Y, XU M, CHEN X, et al. CTAB–assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light[J]. Nanoscale, 2016, 8(1): 440–450.
[4] PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Appl Catal B, 2012, 125: 331–349.
[5] ZHU Z, YAN Y, LI J. Preparation of flower–like BiOBr–WO3–Bi2WO6 ternary hybrid with enhanced visible–light photocatalytic activity[J]. J Alloy Compd, 2015, 651: 184–192.
[6] 王雪静, 乔梅英. 碳微球负载Ag3PO4的合成与其光催化性能[J]. 硅酸盐学报, 2015, 43(1): 98–102.
WANG Xuejing, QIAO Meiying.J Chin Ceram Soc, 2015, 43(1): 98–102.
[7] OKA N, MURATA A, NAKAMURA S, et al. Visible–light active thin–film WO3photocatalyst with controlled high–rate deposition by low–damage reactive–gas–flow sputtering[J]. APL Mater, 2015, 3(10): 104407.
[8] WANG G, LING Y, WANG H, et al. Hydrogen–treated WO3nanoflakes show enhanced photostability[J]. Energy Environ Sci, 2012, 5(3): 6180–6187.
[9] SU J, FENG X, SLOPPY J D, et al. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties[J]. Nano Lett, 2010, 11(1): 203–208.
[10] YU C L, CHEN J C, ZHOU W Q, et al. Grinding calcination preparation of WO3/BiOClheterostructures with enhanced visible light photocatalytic activity[J]. Mater Res Innov, 2015, 19(1): 54–59.
[11] HE G H, HE G L, LI A J, et al. Synthesis and visible light photocatalytic behavior of WO3(core)/Bi2WO6(shell)[J]. J Mol Catal A, 2014, 385: 106–111.
[12] TAHA A A, LI F. Porous WO3–carbon nanofibers: high–performance and recyclable visible light photocatalysis[J]. Catal Sci Technol, 2014, 4(10): 3601–3605.
[13] 赵学国, 黄祖志, 李小红. WO3/Cd2SnO4的制备及其光催化分解水析氧活性[J]. 硅酸盐学报, 2015, 43(1): 116–120.
ZHAO Xueguo, HUAN Zuzi, LI Xiaohong. J Chin Ceram Soc, 2015, 43(1): 116–120.
[14] SU J, GUO L, BAO N, et al. Nanostructured WO3/BiVO4heterojunction films for efficient photoelectrochemical water splitting[J]. NanoLett, 2011, 11(5): 1928–1933.
[15] MONIZ S J A, SHEVLIN S A, MARTIN D J, et al. Visible–light driven heterojunction photocatalysts for water splitting–a critical review[J]. Energy Environ Sci, 2015, 8(3): 731–759.
[16] ZHU Z, YAN Y, LI J. One–step synthesis of flower–like WO3/Bi2WO6heterojunction with enhanced visible light photocatalytic activity[J]. J Mater Sci, 2016, 51(4): 2112–2120.
[17] YI W T, YAN C Y. A Novel visible–light–driven photocatalyst: Pt surface modified Bi2WO6–WO3 composite[J]. Appl Mech Mater, 2013, 448/453: 178–181.
[18] DAI K, LI D, GENG L, et al. Facile preparation of Bi2MoO6/multi–walled carbon nanotube nanocomposite for enhancing photocatalytic performance[J]. Mater Lett, 2015, 160: 124–127.
[19] LI N, LIU G, ZHEN C, et al. Battery performance and photocatalytic activity of mesoporousanatase TiO2nanospheres/graphene composites by template–free self–assembly[J]. Adv Funct Mater, 2011, 21(9): 1717–1722.
[20] LI W, XIA F, QU J, et al. Versatile inorganic–organic hybrid WOx–ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis[J]. Nano Res, 2014, 7(6): 903–916.
[21] ZHANG Z, WANG W, WANG L, et al. Enhancement of visible–light photocatalysis by coupling with narrow–band–gap semiconductor: a case study on Bi2S3/Bi2WO6[J]. ACS ApplMater Interf, 2012, 4(2): 593–597.
[22] HUANG H, WANG S, TIAN N, et al. A one–step hydrothermal preparation strategy for layered BiIO4/Bi2WO6heterojunctions with enhanced visible light photocatalytic activities[J]. RSC Adv, 2014, 4(11): 5561–5567.
[23] BAECK S H, CHOI K S, JARAMILLO T F, et al. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films[J]. Adv Mater, 2003, 15(15): 1269–1273.
[24] FU Y, CHANG C, CHEN P, et al. Enhanced photocatalytic performance of boron doped Bi2WO6nanosheets under simulated solar light irradiation[J]. J Hazard Mater, 2013, 254: 185–192.
[25] PERSICO F, SANSOTERA M, BIANCHI C L, et al. Photocatalytic activity of TiO2–embedded fluorinated transparent coating for oxidation of hydrosoluble pollutants in turbid suspensions[J]. Appl Catal B, 2015, 170/171: 83–89.
[26] JIN X, YE L, WANG H, et al. Bismuth–rich strategy induced photocatalytic molecular oxygen activation properties of bismuth oxyhalogen: The case of Bi24O31Cl10[J]. Appl Catal B, 2015, 165: 668–675.
[27] CAO J, XU B, LIN H, et al. Chemical etching preparation of BiOI/BiOBrheterostructures with enhanced photocatalytic properties for organic dye removal[J]. Chem Eng J, 2012, 185: 91–99.
[28] CAO J, LUO B, LIN H, et al. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties[J]. Appl Catal B, 2012, 111/112(2): 288–296.
[29] WANG K, SHAO C, LI X, et al. Hierarchical heterostructures of p–type BiOClnanosheets on electrospun n–type TiO2nanofibers with enhanced photocatalytic activity[J]. Catal Commun, 2015, 67: 6–10.
[30] DU Y, TANG D, ZHANG G, et al. Facile synthesis of Ag2O–TiO2/sepiolite composites with enhanced visible–light photocatalytic properties[J]. Chin J Catal, 2015, 36(12): 2219–2228.
|