[1] FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37–38.
[2] LEWIS N S. Light work with water[J]. Nature, 2001, 414(6864): 589–590.
[3] SIVULA K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis[J]. J Phys Chem Lett, 2013, 4(10): 1624–1633.
[4] PRÉVot M S, SIVULA K. Photoelectrochemical tandem cells for solar water splitting[J]. J Phys Chem C, 2013, 117(35): 17879–17893.
[5] CHO S, JANG J W, LEE K H, et al. Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes[J]. APL Mater, 2014, 2(1): 010703.
[6] LI Z, LUO W, ZHANG M, et al. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. EnergyEnviron Sci, 2013, 6(2): 347–370.
[7] MATTHEWS R W. An adsorption water purifier with in situ photocatalytic regeneration[J]. J Catal, 1988, 113(2): 549–555.
[8] XIAO F X, MIAO J, TAO H B, et al. One–dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis[J]. Small, 2015, 11(18): 2115–2131.
[9] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253–278.
[10] HISATOMI T, KUBOTA J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chem Soc Rev, 2014, 43(22): 7520–7535.
[11] LONG M C. CAI W M. Photocatalytic and photoelectrochemical properties of p–n heterojunction composites[M]// Castello G K. Handbook of photocatalysts: preparation, structure and applications[M]. Nova Science Publishers, 2010.
[12] GRÄTZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338–344.
[13] SIVULA K, FORMAL F L, GRA?TZEL M. WO3−Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach[J]. Chem Mater, 2009, 21(13): 2862–2867.
[14] LIN Y, XU Y, MAYER M T, et al. Growth of p–type hematite by atomic layer deposition and its utilization for improved solar water splitting[J]. J Am Chem Soc, 2012, 134(12): 5508–5511.
[15] MAYER M T, DU C, WANG D. Hematite/Si nanowire dual–absorber system for photoelectrochemical water splitting at low applied potentials[J]. J Am Chem Soc, 2012, 134(30): 12406–12409.
[16] KRONAWITTER C X, VAYSSIERES L, SHEN S, et al. A perspective on solar–driven water splitting with all–oxide hetero–nanostructures[J]. Energy EnvironSci, 2011, 4(10): 3889–3899.
[17] SMITH W, WOLCOTT A, FITZMORRIS R C, et al. Quasi–core–shell TiO2/WO3and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting[J]. J Mater Chem, 2011, 21(29): 10792–10800.
[18] PIHOSH Y, TURKEVYCH I, MAWATARI K, et al. Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting[J]. Small, 2014, 10(18): 3692–3699.
[19] SHI X, CHOI I Y, ZHANG K, et al. Efficient photoelectrochemical hydrogen production from bismuth vanadate–decorated tungsten trioxide helix nanostructures[J]. Nature Comm, 2014, 5: 4775.
[20] LIU C, TANG J, CHEN H M, et al. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting[J]. Nano Lett, 2013, 13(6): 2989–2992.
[21] XIE Y P, YU Z B, LIU G, et al. CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light[J]. Energy Environ Sci, 2014, 7(6): 1895–1901.
[22] YU Y X, OUYANG W X, LIAO Z T, et al. Construction of ZnO/ZnS/CdS/CuInS2 Core–Shell Nanowire Arrays via Ion Exchange: p–n Junction Photoanode with Enhanced Photoelectrochemical Activity under Visible Light[J]. ACS Appl Mater Interf, 2014, 6(11): 8467–8474.
[23] CHENG C, KARUTURI S K, LIU L, et al. Quantum‐dot‐sensitized tio2 inverse opals for photoelectrochemical hydrogen generation[J]. Small, 2012, 8(1):37–42
[24] ZHANG X, ZENG M, ZHANG J, et al. Improving photoelectrochemical performance of highly–ordered TiO2 nanotube arrays with cosensitization of PbS and CdS quantum dots[J]. RSC Adv, 2016, 6(10): 8118–8126.
[25] SU J, GUO L, BAO N, et al. Nanostructured WO3/BiVO4 hetero–junction films for efficient photoelectrochemical water splitting[J]. Nano Lett,2011, 11(5): 1928–1933.
[26] RAO P M, CAI L, Liu C, et al. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation[J]. Nano Lett, 2014, 14(2): 1099–1105.
[27] MA M, KIM J K, ZHANG K, et al. Double–Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation inHeterojunction[J]. Chem Mater, 2014, 26(19): 5592–5597.
[28] PILLI S K, JANARTHANAN R,DEUTSCH T G, et al. Efficient photoelectro–chemical water oxidation over cobalt–phosphate (Co–Pi) cata–lyst modified BiVO4/1D–WO3 heterojunction electrodes[J].Phys ChemChem Phys, 2013, 15(35): 14723–14728.
[29] KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual–layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174): 990– 994.
[30] LI J, CUSHING S K, ZHENG P, et al. Solar hydrogen generation by a CdS–Au–TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay andplasmonic photosensitizer[J]. J Am Chem Soc, 2014, 136(23): 8438–8449.
[31] LIU B, WU C H, MIAO J, et al. All inorganic semiconductor nano–wiremesh for direct solar water splitting[J]. ACS Nano, 2014, 8(11): 11739–11744.
[32] KIM E S, KANG H J, MAGESH G, et al. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation[J]. ACS Appl Mater Interf, 2014, 6(20): 17762–17769.
[33] ZHANG X, LIN S, LIAO J, et al. Uniform deposition of water–soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetricelectrodeposition: Effectively prevent aggregation and enhance visible–light photocatalytic activity[J]. Electrochim Acta, 2013, 108: 296–303.
[34] HOU J, YANG C, CHENG H, et al. High–performance p–Cu2O/n–TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting[J]. Energy Environ Sci, 2014, 7(11): 3758–3768.
[35] WANG G, YANG X, QIAN F, et al. Double–sided CdS and CdSe quantum dot co–sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation[J]. Nano Lets, 2010, 10(3): 1088–1092.
[36] EISENBERG D, AHN H S, BARD A J. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphoustitanium dioxide[J]. J Am ChemSoc, 2014, 136(40): 14011–14014.
[37] HOU Y, ZUO F, DAGG A, et al. Visible Light–Driven α–Fe2O3 Nanorod/Graphene/BiV1–x MoxO4 Core/Shell Heterojunction Array for Efficient Photoelectrochemical Water Splitting[J]. Nano Lett, 2012, 12(12): 6464–6473.
[38] MONIZ S J A, ZHU J, TANG J. 1D Co‐Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage[J]. Adv Energy Mater, 2014, 4(10): 1066–1070.
[39] XIE M, FU X, JING L, et al. Long‐lived, visible‐light‐excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting[J]. Adv Energy Mater, 2014, 4(5): 39–46.
[40] RESASCO J, ZHANG H, KORNIENKO N, et al. tio2/bivo4 nanowire heterostructure photoanodes based on type ii band alignment[J]. ACS Central Sci, 2016, 2(2): 80–88.
[41] LIU X, WANG F, WANG Q. Nanostructure–based WO3 photoanodes for photoelectrochemical water splitting[J]. Phys ChemChem Phys, 2012, 14(22): 7894–7911.
[42] HONG S J, LEE S, JANG J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy Environ Sci, 2011, 4(5): 1781–1787.
[43] SAITO R, MISEKI Y, SAYAMA K. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3multi–composite in a carbonate electrolyte[J]. ChemCommun, 2012, 48(32): 3833–3835.
[44] CHAE S Y, JUNG H, JEON H S, et al. Morphology control of one–dimensional heterojunctions for highly efficient photoanodes used for solar water splitting[J]. J Mater Chem A, 2014, 2(29): 11408–11416.
[45] WANG H, ZHANG L, Chen Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chem Soc Rev, 2014, 43(15): 5234–5244.
[46] KIM H G, BORSE P H, JANG J S, et al. Fabrication of CaFe2O4/MgFe2O4bulk heterojunction for enhanced visible light photocatalysis[J]. Chem Commun, 2009 (39): 5889–5891.
[47] KIM H G, BORSE P H, CHOI W, et al. Photocatalytic Nanodiodes for Visible‐Light Photocatalysis[J]. Angew Chem Int Edit, 2005, 44(29): 4585–4589.
[48] KIM E S, NISHIMURA N, MAGESH G, et al. Fabrication of CaFe2O4/TaONheterojunction photoanode for photoelectrochemical water oxidation[J].J Am Chem Soc, 2013, 135(14):5375–5383.
[49] AHMED M G, KANDIEL T A, AHMED A Y, et al. Enhanced Photoelectro–chemical Water Oxidation on Nanostructured Hematite Photoanodes via p–CaFe2O4/n–Fe2O3 Heterojunction Formation[J].J Phys Chem C, 2015, 119(11): 5864–5871.
[50] MIYAUCHI M, NUKUI Y, ATARASHI D, et al. Selective growth of n–type nanoparticles on p–type semiconductors for Z–scheme photo catalysis[J]. ACS Appl Mater Interf, 2013, 5(19): 9770–9776.
[51] LONG M, CAI W, KISCH H. Visible light induced photoelectrochemical properties of n–BiVO4 and n–BiVO4/p–Co3O4[J]. J Phys Chem C, 2008, 112(2): 548–554.
[52] ZHONG M, HISATOMI T, KUANG Y, et al. Surface Modification of CoOxLoaded BiVO4 Photoanodes with Ultrathin p–Type NiO Layers for Improved Solar Water Oxidation[J]. J Am Chem Soc, 2015, 137(15): 5053–5060.
[53] CHANG X, WANG T, ZHANG P, et al. Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co3O4/BiVO4Photoanodes[J]. J Am Chem Soc, 2015, 137(26): 8356–8359.
[54] WANG Y C, CHANG C Y, YEH T F, et al. Formation of internal p–n junctions in Ta3N5 photoanodes for water splitting[J]. JMater Chem A, 2014, 2(48): 20570–20577.
[55] TACHIBANA Y, VAYSSIERES L, DURRANT J R. Artificial photosynthesis for solar water–splitting[J]. Nature Photon, 2012, 6(8): 511–518.
[56] MAEDA K, HIGASHI M,LU D L, et al.Efficient nonsacrificial water splitting through two–step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J].J Am Chem Soc, 2010, 132(16): 5858–5868.
[57] SAYAMA K, ABE R, ARAKAWA H, et al. Decomposition of water into H2and O2 by a two–step photoexcitation reaction over a Pt–TiO2photocatalyst in NaNO2 and Na2CO3 aqueous solution[J]. CatalCommun, 2006, 7(2): 96–99.
[58] KATO H, HORI M, KONTA R, et al. Construction of Z–scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation[J]. Chem Lett, 2004, 33(10): 1348–1349.
[59] YOUREY J E, KURTZ J B, BARTLETT B M. Water oxidation on a CuWO4–WO3 composite electrode in the presence of [Fe(CN)6]3–: Toward solar Z–scheme water splitting at zero bias[J]. J Phys Chem C, 2012, 116(4): 3200–3205.
[60] SASAKI Y, KATO H, KUDO A. [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z–scheme photocatalyst system[J]. J Am Chem Soc, 2013, 135(14): 5441–5449.
[61] KUDO A. Z–scheme photocatalyst systems for water splitting under visible light irradiation[J]. MRS Bull, 2011, 36(01): 32–38.
[62] SASAKI Y, NEMOTO H, SAITO K, et al. Solar water splitting using powdered photocatalysts driven by Z–schematic interparticle electron transfer without an electron mediator[J]. J Phys Chem C, 2009, 113(40): 17536–17542.
[63] SIVULA K, GRATZEL M. Tandem photoelectrochemical cells for water splitting[M]. in Photoelectrochemical Water Splitting: Materials, Processes and Architectures, edit., 2013 (9): 83.
[64] ZHOU P, YU J, JARONIEC M. All–Solid–State Z–Scheme Photocatalytic Systems[J]. Adv Mater, 2014, 26(29): 4920–4935.
[65] WANG X, PENG K Q, HU Y, et al. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation[J]. Nano Lett, 2013, 14(1): 18–23.
[66] QI X, She G, Huang X, et al. High–performance n–Si/α–Fe2O3core/shell nanowire array photoanode towards photoelectrochemical water splitting[J]. Nanoscale, 2014, 6(6): 3182–3189.
[67] CORIDAN R H, ARPIN K A, BRUNSCHWIG B S, et al. Photoelectrochemical behavior of hierarchically structured Si/WO3 core–shell tandem photoanodes[J]. Nano Lett, 2014, 14(5): 2310–2317.
[68] SHANER M R, FOUNTAINE K T, ARDO S, et al. Photoelectrochemistry of core–shell tandem junction n–p+–Si/n–WO3 microwire array photoelectrodes[J]. Energy Environ Sci, 2014, 7(2): 779–790.
[69] YANG Y, WANG J, ZHAO J, et al. Photochemical charge separation at particle interfaces: the n–BiVO4–p–silicon system[J]. ACS Appl Mater Interf, 2015, 7(10): 5959–5964.
[70] LIU C, DASGUPTA N P, YANG P. Semiconductor nanowires for artificialphotosynthesis[J]. Chem Mater, 2013, 26(1): 415–422.
[71] MAYER M T, LIN Y, YUAN G, et al. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite[J]. Accounts of chemical research, 2013, 46(7): 1558–1566.
[72] WANG W, CHEN S, YANG P X, et al. Si: WO3 heterostructure for Z–scheme water splitting: an ab initio study[J]. JMater Chem A, 2013, 1(4): 1078–1085.
[73] CORIDAN R H, SHANER M, WIGGENHORNC, et al. Electrical and photo electrochemical properties of WO3/Si tandem photoelectrodes[J]. J Phys Chem C, 2013, 117(14): 6949–6957.
|