首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
含氢硅油表面改性SiO2疏水增透膜的制备及其表征
作者:孙盈盈 胡星宇 林海 张慧君 杨文斌 张欣向 
单位:福建农林大学材料工程学院 福州 350002 
关键词:溶胶–凝胶法 二氧化硅增透膜 疏水 含氢硅油 
分类号:TB332
出版年,卷(期):页码:2017,45(1):150-156
DOI:10.14062/j.issn.0454-5648.2017.01.22
摘要:

 采用含氢硅油(poly(methylthdrogen)siloxane,PMHS)对溶胶–凝胶法制备的SiO2增透膜进行表面修饰,以提高其疏水性能。采用含氢量分别为0.2%、1.0%和1.5%的PMHS,研究改性剂溶液中PMHS含量对增透膜性质的影响。结果表明:经含氢量为0.2%的PMHS改性后的SiO2增透膜仍能保持99.50%以上较高的透过率;而经含氢量为1.0%和1.5%的PMHS改性的增透膜的透过率下降显著。0.2%PMHS改性的增透膜的显微结构与未改性的相似,而1.5%PMHS改性的增透膜孔隙数目明显减少。经含氢量为0.2%、1.0%和1.5%的PMHS改性的增透膜的疏水性能得到明显地提高。Fourier 红外光谱表明,与未改性SiO2增透膜相比,改性SiO2增透膜在1257和796 cm–1处出现归属于Si―CH3的吸收峰,说明PMHS疏水链被成功接枝至SiO2增透膜表面。

 

 Poly(methylthdrogen)siloxane (PMHS) was used to modify the surface hydrophobicity of sol-gel silica antireflective (AR) coating. The effect of PMHS content in modifier solution on the properties of SiO2 AR coatings was investigated. The results show that the SiO2 AR coating modified with 0.2 % PMHS possesses the transmittance of 99.50%., and the transmittance of SiO2 A R coating decreases after modified with 1.0 % and 1.5 % PMHS. The microstructures of SiO2 AR coatings before and after modified with 0.2% PMHS are similar. After the modification with 1.5 % PMHS, the porosity of SiO2 AR coating decreases. It is indicated that the surface modification with PMHS significantly improves the hydrophobicity of AR coatings. Based on the analysis by Fourier infrared spectroscopy, the surface of SiO2 particles modified with PMHS has two additional absorption bands at 796 and 1257 cm–1, which are corresponding to the Si―CH3 stretching and bending vibrations, indicating that the hydrophobic PMHS chains are grafted onto SiO2 particles.

 
基金项目:
国家自然科学基金项目(61505029);中国石油科技创新基金 项目(2014D-5006-0202)资助。
作者简介:
孙盈盈(1993—),女,硕士研究生
参考文献:

 [1]MAHADIK Dinesh B, LAKSHMI RVenkat, BARSHILIA Harish C. High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications[J]. Solar Energy Mater Solar Cells, 2015, 40: 61–68.

[2]WANG Cong, HU Qingwei, FANG Pengfei, et al. Study on antireflection SiO2 coatings fabricated by layer-by-layer deposition[J]. Wuhan Univ J Nat Sci 2013, 18(3): 213–218.
[3]YAO Jianxi, BAI Yiming, CHEN Noufu, et al. Sol-gel preparation,characterization, and photocatalytic activity of macroporous TiO2 thin films[J]. J Am Ceram Soc, 2011, 94(4): 1191–1197.
[4]叶龙强, 张清华, 张雨露, 等. 耐摩擦和高透过SiO2/TiO2/SiO2- TiO2增透膜的设计和制备[J]. 无机材料学报, 2012, 27(8): 871–875.
Ye Longqiang, Zhang Qinghua, Zhang Yulu, et al. J Inorg Mater (in Chinese), 2012, 27(8): 871–875.
[5]Floch Herve G, Belleville Philippe F. A scratch-resistant single-layer antireflective coating by a low temperature sol-gel route[J]. J Sol-Gel Sci Technol, 1994, 1(3): 293–304.
[6]XIA Bibo, ZHANG Qinghua, YAO Songyuan, et al. Sol-gel silica antireflective coating with enhanced abrasion-resistance using polypropylene glycol as porogen[J]. J Sol-Gel Sci Technol, 2014, 71(2): 291–296.
[7]CAI Shuang, ZHANG Yulu, ZHANG Hongli, et al. Sol-Gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. ACS Appl Mater Interfaces, 2014, 6(14): 11470–11475.
[8]张欣向, 庄梦云, 林明月, 等. 折射率可调SiO2薄膜及耐环境性宽频增透膜的制备[J]. 功能材料, 2014, 22: 22143–22146. 
ZHANG Xinxiang, ZHUANG Mengyun, LIN Mingyue, et al. Funct Mater (in Chinese), 2014, 22: 22143–22146. 
[9]Zhang Xinxiang, Cao Congrui, Xiao Bo, et al. Preparation and characterization of polyvinyl butyral/silica hybrid antireflective coating: effect of PVB on moisture-resistance and hydrophobicity[J]. J Sol-gel Sci Technol, 2010, 53(1): 79–84.
[10]霍艳芳, 罗荣辉, 苏永钢. 水氨或/和六甲基二硅氮烷表面处理碱催化二氧化硅增透膜结果的对比研究[J]. 光子学报, 2013, 07: 823–827. 
HUO Yanfang, LUO Ronghui, SU Yonggang. Acta Photonica Sinica (in Chinese), 2013, 07: 823–827.
[11]MA Jianhua, WU Guangming, WEI Jiandong, et al. Preparation and Research of hydrophobic optical silica thin film with variable refractive index[J]. At Energy Sci Technol, 2002, 36(4/5): 335–339. 
[12]胡小娟, 刘岚, 罗远芳, 等. 溶胶-凝胶法制备超疏水PMHS—SiO2涂膜[J]. 材料研究学报, 2010, 03: 266–272. 
HU Xiaojuan, LIU Lan, LUO Yuanfang, et al. Chin J Mater Res (in Chinese), 2010, 03: 266–272. 
[13]St?ber Werner, Fink Arthur, Bohn Ernst. Controlled growth of monodisperse silica spheres in the micron size range[J]. Colloid Interface Sci, 1968, 26: 62–69. 
[14]张雨露, 张欣向, 业海平, 等. 不同厚度三倍频SiO2增透膜的设计,制备与改性[J]. 无机化学学报, 2012, 28(1): 119–124. 
ZHANG Yulu, ZHANG Xinxiang, YE Haiping, et al. Chin J Inorg Chem (in Chinese), 2012, 28(1): 119–124.
[15]商春燕, 袁慎峰, 尹红, 等. 1HNMR测定含氢硅油含氢量及分子 量[J]. 光谱实验室, 2011, 28(3): 1287–1292. 
SHANG Chunyan, YUAN Shenfeng, YI Hong, et al. Chin J Spectro Lab (in Chinese), 2011, 28(3): 1287–1292. 
[16]KIM Suhan, CHO Jinhan, CHAR Kookheon. Thermally stable antireflective coatings based on nanoporous organosilicate thin films[J]. Langmuir, 2007, 23(12): 6737–6743. 
[17]KUO Tingwei, WANG Nafu, TSAI Yuzen, et al. Broadband triple- layer SiOx/SiOxNy/SiNx antireflective coatings in textured crystalline silicon solar cells[J]. Mater Sci Semicond Process, 2014, 25: 211–218. 
[18]熊珊, 江向平, 李菊梅, 等. Fe3O4/SiO2核壳复合磁性微球的制备和表征[J]. 硅酸盐学报, 2015, 43(3): 946–951. 
XIONG Shan, JIANG Xiangping, LI Junmei, et al. J Chin Ceram Soc, 2015, 43(3): 946–951.
[19]YAO Lin, HE Junhui. Broadband antireflective superhydrophilic thin films with outstanding mechanical stability on glass substrates[J]. Chin J Chem, 2014. 32(6): 507–512. 
[20]GOSWAMI Debmita, MEDDA Samar Kumar, DE Goutam. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles[J]. ACS Appl Mater Interfaces, 2011, 3(9): 3440–3447.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com