首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
流变参数对自密实混凝土等效砂浆静态稳定性的影响
作者:马昆林 冯金 龙广成 谢友均 陈小波 
单位:中南大学土木工程学院 高速铁路建造技术国家工程实验室 重载铁路工程结构教育部重点实验室 长沙 410075 
关键词:自密实混凝土 混凝土等效砂浆 塑性黏度 触变性 静态稳定性 
分类号:TU528
出版年,卷(期):页码:2017,45(2):196-205
DOI:10.14062/j.issn.0454-5648.2017.02.04
摘要:

采用旋转黏度计测试了基于混凝土等效砂浆法所配制砂浆的塑性黏度和触变性,采用冲模–揭板试验研究了不同塑性黏度和触变性的砂浆硬化后表面的气泡特点,采用硬化后砂浆表层气泡率和表层气泡直径对砂浆的静态稳定性进行了表征。结果表明:塑性黏度和触变性对硬化后砂浆表层气泡率和直径均有重要影响。相对于触变性,塑性黏度与砂浆表层气泡率和直径的相关性更高。砂浆表层气泡率和气泡直径均随黏度增大而显著减少,砂浆黏度不低于3.5 Pa·s时,表层气泡率小于5%,直径大于5 mm的气泡数量接近零。砂浆表层气泡率随触变性增加而减少,砂浆触变性不低于12.5×103 Pa/s时,砂浆表层气泡率基本小于10%。当砂浆塑性黏度不低于3.5 Pa·s且触变性不低于12.5×103 Pa/s时,其静态稳定性较好。

 

 The plastic viscosity and thixotropy of self-compacting concrete equivalent mortar (SCCEM) were tested by rotational viscometer. The surface bubbles characteristics of mortar with different plastic viscosities and thixotropies were investigated by a self-designed filling-box device. Two parameters of surface bubbles ratio (SBR) and surface bubble diameter (SBD) of hardened mortar were used to characterize the static stability of mortar. The results show that the plastic viscosity and thixotropy both have great influences on SBR and SBD. Compared to the thixotropy, the correlation between the plastic viscosity and SBR/SBD is better. SBR and SBD of mortar decrease dramatically with the increasing plastic viscosity. When plastic viscosity is no less than 3.5 Pa·s, SBR is less than 5% and SBD larger than 5 mm is close to zero. SBR of mortar reduces with the increasing thixotropy. SBR is almost less than 10% when the thixotropy of fresh mortar is more than 12.5×103 Pa/s. When the plastic viscosity is more than 3.5 Pa·s and the thixotropy of fresh mortar is more than 12.5×103 Pa/s, SCCEM has a good static stability.

 
基金项目:
国家自然科学基金(51678569,51678568);国家“973”计划 (2013CB036201);中南大学教师科学基金(2014JSJJ013)资助。
作者简介:
马昆林(1976—),男,博士,副教授
参考文献:

 [1] OKAMURA H, OUCHI M. Self-compacting high performance  concrete [J]. Prog Struct Eng Mater, 1998, 1(4): 378–83.

[2] AÏCIN P C. Cements of yesterday and today-concrete of tomorrow [J]. Cem Concr Res, 2000, 30(9): 1349–59.
[3] KHAYAT K H, HU C H. Monty. Stability of self-compacting concrete advantages, and potential applications[A]//1st international RILEM Symposium on self-compacting concrete[C]//Stockholm, Sweden,  1999, 9.
[4] 张勇, 赵庆新, 李化建, 等. 自密实混凝土基本工作性能与其静态稳定性间的关系[J]. 硅酸盐学报, 2016, 44(2): 261–267.
ZHANG Yong, ZHAO Qingxin, LI Huajia, et al. J Chin Ceram Soc, 2016, 44(2): 261–267.
[5] KHAYAT K H, ASSAAD J. Air-void stability in self-consolidating concrete [J]. ACI Mater J, 2002, 99(4): 408–416.
[6] 张勇, 李化建, 赵庆新,等. 自密实混凝土稳定性评价方法研究进 展[J]. 混凝土, 2015(10): 113–118.
ZHANG Yong, LI Huajia, ZHAO Qingxin, et al. Concrete (in Chinese), 
2015 (10): 113–118.
[7] RAHMAN M K, BALUCH M H, MALIK M A. Thixotropic behavior of self compacting concrete with different mineral admixtures[J]. Construct Build Mater, 2014, 50(15): 710–717.
[8] NUNES S, OLIVEIRA P M, COUTINHO J S, et al. Rheological characterization of SCC mortars and pastes with changes induced by cement delivery [J]. Cem Concr Compos, 2011, 33 (1): 103–115.
[9] LASKAR A I, TALUKDAR S. Rheological behavior of high performance concrete with mineral admixtures and their blending [J]. Construct Build Mater, 2008, 22(12): 2345–2354.
[10] CORINALDESI V, MORICONI G. The role of industrial by-products in self-compacting concrete [J]. Construct Build Mater, 2011, 25(8): 3181–3186.
[11] 马昆林, 龙广成, 谢友均, 等. 水泥–粉煤灰–石灰石粉复合浆体的流变性能[J]. 硅酸盐学报, 2013, 41(5): 582–585.
MA Kunlin, LONG Guangcheng, XIE Youjun, et al. J Chin Ceram Soc, 2013, 41(5): 582–585.
[12] 唐修生, 蔡跃波, 温金保, 等. 磨细矿渣复合浆体流变参数与流动度的相关性[J]. 硅酸盐学报, 2014, 42(5): 648–652.
TANG Xiusheng, CAI Yuebo, JIN Baowen, et al. J Chin Ceram Soc, 2014, 42(5): 648–652.
[13] LEEMANN A, WINNEFELD F. The effect of viscosity modifying agents on mortar and concrete [J]. Cem Concr Compos, 2007, 29 (5): 341–349.
[14] CAPPELLARI M, DAUBRESSE A, CHAOUCHE M. Influence of organic thickening admixtures on the rheological properties of mortars: Relationship with water-retention [J]. Construct Build Mater, 2013, 38(1): 950–961.
[15] SCHWARTZENTRUBER A, CATHERINE C. Method of the concrete equivalent mortar (CEM)-A new tool to design concrete containing admixture[J]. Mater Struct, 2000, 33(232): 475–482. 
[16] ERDEM T K, KHAYAT K H, YAHIA A. Correlating rheology of SCC to corresponding concrete-equivalent mortar[J]. ACI Mater J, 2009, 106(2): 154–161.
[17] RUBIO-HERNANDEZ F J, VELAZQUEZ-NAVARRO J F, ORDOÑEZ-BELLOC L M. Rheology of concrete: a study case based upon the use of the concrete equivalent mortar[J]. Mater Struct, 2013, 46(4): 587–605.
[18] 张雄, 张蕾. 流变学理论在水泥基材料中的应用[J]. 粉煤灰综合利用, 2013(4): 9–13.
ZHANG Xiong, ZHANG Lei. Fly Ash Comprehen Util (in Chinese), 2013(4): 9–13.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com