[1]Shi C, Xie P. Interface between cement paste and quartz sand in alkali-activated slag mortars[J]. Cem Concr Res, 1998, 28(6): 887–896.
[2]Feng D C, Xie N, Gong C W, et al. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective[J]. Ind Eng Chem Res, 2013, 52: 11575−11582.
[3]胡曙光, 王发洲, 丁庆军. 轻集料与水泥石的界面结构[J]. 硅酸盐学报, 2005, 33(6): 713–717.
HU Shuguang, WANG Fazhou, DING Qingjun. J Chin Ceram Soc, 2005, 33(6): 713–717.
[4]Xuan D X, Shui Z H, Wu S P. Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete[J]. Constr Build Mater, 2009, 23: 2631–2635.
[5]Sato T, Beaudoin J J. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials[J]. Adv Cem Res, 2010, 23 (1): 1–29.
[6]党玉栋, 钱觉时, 曲艳召, 等. 内养护对不同细度水泥制备的砂浆性能的影响[J]. 硅酸盐学报, 2012, 40(5): 657–663.
DANG Yudong, QIAN Jueshi, QU Yanzhao, et al. J Chin Ceram Soc , 2012, 40(5): 657–663.
[7]ERDEM S, DAWSON A R, THOM N H. Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates[J]. Cem Concr Res, 2012, 42(2): 447–458.
[8]高辉, 张雄, 张永娟. 混凝土气孔结构对其强度及界面过渡区的影响[J]. 同济大学学报: 自然科学版, 2014, 42(5): 751–755.
GAO Hui, ZHANG Xiong, ZHANG Yongjuan. J Tongji Univ: Nat Scie, 2014, 42(5): 751–755.
[9]Xie N, Muthumani A, Dang Y, et al. Deicer Impacts on Concrete Bridge Decks: A Comparative Study of Field Cores from Potassium Acetate and Sodium Chloride Environments[C]// ZHAO S, LIU J and ZHANG X ed, Innovative Materials and Design for Sustainable Transportation Infrastructure, Alaska: American Society of Civil Engineers, 2015: 42–57.
[10]CEN. EN ISO 4516-2002. Metallic and other inorganic coatings - Vickers and Knoop microhardness tests[S]. EN: CEN, 2002.
[11]中华人民共和国冶金工业部. GB/T 4342—1991金属显微维氏硬度试验方法[S]. 北京: 中国标准出版社, 1991.
Ministry of Metallurgical Industry of the PRC. GB/T 4342—1991 Standard method of Vickers microhardness tests of Metal. Beijing: China Standards Press, 1991.
[12]ASTM. ASTM C1327. Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics[S]. US: ASTM, 1999.
[13]Lin C K, Berndt C C. Statistical analysis of microhardness variations in thermal spray coatings[J]. J Mater Sci, 1995, 30(1): 111–117.
[14]SCHNEIDER J M, BIGERELLE M, LOST A. Statistical analysis of the Vickers hardness[J]. Mater Sci Eng, A, 1999, 262 (1): 256–263.
[15]FACTOR M, ROMAN I. Vickers microindentation of WC–12% Co thermal spray coating: Part 1: statistical analysis of microhardness data[J]. Surf Coat Technol, 2000, 132(2): 181–193.
[16]ASTM. ASTM E384–99. Standard Test Method for Microindentation Hardness of Materials[S]. US: ASTM, 1999.
[17]Montgomery D C, Runger G C. Applied Statistics and Probability for Engineers 6th edition[M]. London: Wiley, 2014.
[18]Croarkin C, Tobias P. NIST/SEMATECH e-handbook of statistical methods. National Institute of Standards and Technology [EB/OL], (2012–04–20) [2016–08–112]. http://www.itl.nist.gov/ div898/handbook.
[19]Michalopoulos A P, Triandafilidis G E. Influence of water on hardness, strength and compressibility of rock[J]. Bull Assoc Eng Geol, 1976, 13: 1–12.
[20]Zheng J, Weng L Q, Shi M Y, et al. Effect of water content on the nanomechanical properties and microtribological behavior of human tooth enamel[J]. Wear, 2013, 301(1/2): 316–323.
[21]Auvray C, Arnold G, Armand G. Experimental study of elastic properties of different constituents of partially saturated argillite using nano-indentation tests[J]. Eng Geol, 2015, 191(29): 61–70.
[22]BALAKRISHNAN N, CHEN W S. Handbook of tables for order statistics from lognormal distributions with applications[M]. New York: Springer, 1999: 5–6.
[23]Zhou X H, GAO S. Confidence Intervals for the log‐normal mean[J]. Stat Med, 1997, 16(7): 783–790.
|