首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
含不同形态硅灰的复合胶凝材料浆体的流变学特性
作者:刘娟红1 张璇1 韩方晖1 阎培渝2 
单位:1. 北京科技大学土木与环境工程学院 北京 100083 2. 清华大学土木工程系 土木工程安全与耐久教育部重点实验室 北京 100084 
关键词:流变性能 原状硅灰 加密硅灰 复合胶凝材料 屈服应力 塑性黏度 
分类号:TQ127.11
出版年,卷(期):页码:2017,45(2):220-226
DOI:10.14062/j.issn.0454-5648.2017.02.07
摘要:

 通过流变度和坍落度测试,研究了原状硅灰和加密硅灰对水灰比为0.25和0.30的复合胶凝材料的流变性能的影响。结果表明:初始测量中,加密硅灰(0~12%)使净浆屈服应力从0~5 Pa增加到20~60 Pa,塑性黏度从1 500 mPa·s增大到3 200 mPa·s;原状硅灰的掺加(0~12%)使净浆的屈服应力基本维持在0~8 Pa,塑性黏度在1 500~2 000 mPa·s。加密硅灰可以增大复合胶凝材料浆体的屈服应力和塑性黏度,原状硅灰则能在一定时间内使复合胶凝材料浆体保持相同的流变性。无论含有何种形态的硅灰,复合胶凝材料浆体的屈服应力和扩展度之间均呈线性关系,相关系数达到R2=0.911 16。

 

 The rheological properties of composition binder pastes with raw silica fume and condensed silica fume at water to binder ratios of 0.25 and 0.30 were investigated by rheometry and mini slump cone measurement. The results show that composite binder paste with condensed silica fume (0–12%) has a greater yield stress from 0–5 Pa to 20–60 Pa, and a higher plastic viscosity from 1 500 mPa·s to 3 200 mPa·s. The paste with raw silica fume (0–12% addition) has the yield stress of 0–8 Pa and the plastic viscosity of 1 500–2 000 mPa·s. It is indicated that CSF increases the yield stress and plastic viscosity of pastes, RSF has the constant yield stress and plastic viscosity of pastes and an effect on the rheological properties. In addition, a liner relationship between yield stress and slump flow of the pastes with different types of silica fume was also proposed, and the correlation index is R2=0.911 16.

 
基金项目:
教育部博士点基金项目(20130002110033)。
作者简介:
刘娟红(1966—),女,博士,教授。
参考文献:

 [1] NEHDI M, MINDNESS S, AÏTCIN P C. Rheology of high- performance concrete: effect of ultrafine particles [J]. Cem Concr Res, 1998, 28: 687–697. 

[2] TURK K. Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica   fume [J]. Constr Build Mater, 2012, 37: 326–334.
[3] COLLINS F, SANJAYAN J G. Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder [J]. Cem Concr Res, 1999, 29(4): 59–62.
[4] VIKAN H, JUSTNES H. Rheology of cementitious paste with silica fume or limestone [J]. Cem Concr Res, 2007, 37 (11): 1512–1517.
[5] JUSTNES H. Condensed silica fume as a cement extender [A]// Structure and Performance of Cements [C]. London, 2002: 399–408.
[6] SELLEVOLD E J, RADJY F F. Condensed silica fume (Microsilica) in concrete: water demand and strength development [A]// Proceedings of the CANMET/ ACI First International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete[C]. Quebec, Canada, 1983, 79: 667–694.
[7] PARK C K, NOH M H, PARK T H. Rheological properties of cementitious materials containing mineral admixtures [J]. Cem Concr Res, 2005, 35 (5): 842–849.
[8] JIANG Jun, LU Zhongyuan, NIU Yunhui, et al. Investigation of the properties of high-porosity cement foams based on ternary Portland cement–metakaolin–silica fume blends [J]. Constr Build Mater, 2016, 107: 181–190.
[9] CHEN J J, FUNG W W S, KWAN A K H. Effects of CSF on strength, rheology and cohesiveness of cement paste [J]. Constr Build Mater, 2012, 35: 979–987.
[10] CHEN J J, KWAN A K H. Superfine cement for improving packing density, rheology and strength of cement paste [J]. Cem Concr Compos, 2012, 34: 1–10.
[11] KWAN A K H, FUNG W W S. Effects of CSF content on rheology and cohesiveness of mortar [J]. Mag Concr Res, 2011, 63(2): 99–110.
[12] ZHANG Xiong, HAN Jihong. The effect of ultra-fine admixture on the rheological property of cement paste [J]. Cem Concr Res, 2000, 30(5): 827–30.
[13] SALEM T H M. Electrical conductivity and rheological properties of ordinary Portland cement-silica fume and calcium hydroxide-silica fume pastes[J]. Cem Concr Res, 2002 (32): 1473–1481.
[14] LU Cairong, YANG Hu, MEI Guoxing. Relationship between slump flow and rheological properties of self compacting concrete with silica fume and its permeability [J]. Constr Build Mater, 2015, 75: 157–162.
[15] JALAL M T F, POULADKHAN A, HARANDI O F S, JAFARI D. Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete [J]. Constr Build Mater, 2015, 94: 90–104.
[16] WALLEVIK O H. The rheology of fresh concrete and application on concrete with and without silica fume[D]. Norwegian University of Science and Technology, Norwegian: Trondheim, 199.
[17] NEHDI M, MINDNESS S. Rheology of high-performance concrete: effect of ultrafine particles[J]. Cem Concr Res, 1998, (28): 687–697.
[18] DIAMOND S, SAHU S, THAULOW N. Reaction products of densified silica fume agglomerates in concrete [J]. Cem Concr Res, 2004, 34(9): 1625–1632.
[19] ZHANG Zengqi, ZHANG Bo, YAN Peiyu. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete [J]. Constr Build Mater, 2016, 15: 82–93.
[20] KONG Xiangming, ZHANG Yanrong, HOU Shanshan. Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers [J]. Rheol Acta, 2013, 53(7): 707–718
[21] BALDINO N, GABRIELE D, LUPI F R, et al. Rheological behavior of fresh cement pastes: Influence of synthetic zeolites, limestone and silica fume [J]. Cem Concr Res, 2014, 63: 38–45.
[22] SHANG Yu, ZHANG Dong, YANG Chao, et al. Effect of graphene oxide on the rheological properties of cement pastes [J]. Constr Build Mater, 2015, 96: 20–28.
[23] FERRARIS C F, DE LARRARD F. Testing and Modeling of Fresh Concrete Rheology [A]// National Institute of Standards and Technology[C]. Gaithersburg, 1998: 6094.
[24] CELIK F, CANAKCI H. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA) [J]. Constr Build Mater, 2015, 91: 187–194.
[25] LACHEMI M, HOSSAIN K M A, NKINAMUBANZI P C, et al. Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste [J]. Cem Concr Res, 2004, 34(2): 185–93.
[26] PETIT J Y, WIRQUIN E, VANHOVE Y, et al. Yield stress and viscosity equations for mortars and self-consolidating concrete [J]. Cem Concr Res, 2007, 37: 655–670.
[27] ROUSSEL N, LEMAÎTRE A, FLATT R J, et al. Steady state flow of cement suspensions: a micromechanical state of the art [J]. Cem Concr Res, 2010, 40: 77–84.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com