[1] TANG Luping, UTGENANNT Peter, BOUBITSAS Dimitrios. 钢筋混凝土结构的耐久性和服役寿命预测[J]. 硅酸盐学报, 2015, 43(10): 1407–1419.
TANG Luping, UTGENANNT Peter, BOUBITSAS Dimitrios. J Chin Ceram Soc, 2015, 43(10): 1407–1419.
[2] Castro P, Moreno E I, Genesca J. Influence of marine micro-climates on carbonati- on of reinforced concrete buildings[J]. Cem Concr Res, 2000, 30(10): 1565–1571.
[3] DAY R L. Strength, durability and creep of fly-ash concrete part Ⅱserviceability and durability of construction materials [A]. Proceedings of the First Materials Engineering Congress [C]. Denver, 1990: 864–873.
[4] HOLT Erika, FERREIRA Miguel, KUOSA Hannele. 多重劣化机制作用下混凝土的性能和耐久性[J]. 硅酸盐学报, 2015, 43(10): 1419–1428.
HOLT Erika, FERREIRA Miguel, KUOSA Hannele, et al. J Chin Ceram Soc, 2015, 43(10): 1419–1428.
[5] 罗小勇, 邹洪波, 施清亮. 不同应力状态下混凝土碳化耐久性试验研究[J]. 自然灾害学报. 2012, 21(22): 195–199.
LUO Xiaoyong, ZHOU Hongbo, SHI Qingliang. J Nat Disasters (in Chinese), 2012, 21(22): 195–199.
[6] 牛建刚, 牛荻涛, 刘万里. 弯曲荷载影响粉煤灰混凝土碳化规律的研究[J]. 硅酸盐通报, 2011, 30(1): 140–146.
NIU Jiangang, NIU Ditao, LIU Wanli. Bull Chin Ceram Soc (in Chinese), 2011, 30(1): 140–146.
[7] 侯景鹏, 史巍, 袁勇. 钢筋混凝土早龄期约束收缩试验研究[J]. 硅酸盐通报, 2016, 35(1): 292–296.
HOU Jingpeng, SHI Wei, YUAN Yong. Bull Chin Ceram Soc (in Chinese), 2016, 35(1): 292–296.
[8] 蒋金洋, 孙伟, 金祖权, 等. 疲劳载荷与碳化耦合作用下结构混凝土寿命预测[J]. 建筑材料学报, 2010, 13(3): 304–309.
JIANG Jinyang, SUN Wei, JIN Zuquan, et al. J Build Mater (in Chinese), 2010, 13(3): 304–309.
[9] 赵庆新, 许宏景, 闫国亮. 应力损伤对混凝土抗碳化性能的影响[J]. 建筑材料学报, 2013, 16(3): 503–507.
ZHAO Qingxin, XU Hongjing, YAN Guoliang. J Build Mater (in Chinese), 2013, 16(3): 503–507.
[10] 李士彬, 孙伟. 疲劳、碳化和氯盐作用下混凝土劣化的研究进展[J]. 硅酸盐学报, 2013, 41(11): 1459–1464.
LI Shibin, SUN Wei. J Chin Ceram Soc, 2013, 41(11): 1459–1464.
[11] 付传清, 屠一军, 金贤玉, 等. 荷载作用对混凝土中氯盐传输的影响研究进展[J]. 硅酸盐学报, 2015, 43(4): 400–410.
FU Chuanqing, TU Yijun, JIN Xianyu, et al. J Chin Ceram Soc, 2015, 43(4): 400–410.
[12] 王艳, 牛荻涛, 苗元耀, 等. 弯曲荷载作用下钢纤维混凝土碳化性能[J]. 西安建筑科技大学学报: 自然科学版, 2015, 47(1): 51–55.
WANG Yan, NIU Ditao, MIAO Yuanyao, et al. J Xi'an Univ Arch Tech: Nat Sci Ed (in Chinese), 2015, 47(1): 51–55.
[13] 陈伟, 徐亦冬, 耿健. 碳化和应力作用对混凝土抗氯离子渗透性能的影响[J]. 硅酸盐通报, 2015, 34(5): 1199–1204.
CHEN Wei, XU Yidong, GEN Jian. Bull Chin Ceram Soc (in Chinese), 2015, 34(5): 1199–1204.
[14] 涂永明, 吕志涛. 应力状态下混凝土的碳化试验研究[J]. 东南大学学报: 自然科学版, 2003, 33(5): 573–576.
TU Yongming, LV Zhitao. J Southeast Univ: Nat Sci Ed (in Chinese), 2003, 33(5): 573–576.
[15] 田浩, 李国平, 刘杰, 等. 受力状态下混凝土试件碳化试验研究[J]. 同济大学学报: 自然科学版, 2010, 38(2): 200–205.
TIAN Hao, LI Guoping, LIU Jie, et al. J Tongji Univ: Nat Sci (in Chinese), 2010, 38(2): 200–205.
[16] 金南国, 徐亦斌, 付传清, 等. 荷载、碳化和氯盐侵蚀对混凝土劣化的影响[J]. 硅酸盐学报, 2015, 43(10): 1483–1491.
JIN Nanguo, XU Yibin, FU Chuanqing, et al. J Chin Ceram Soc, 2015, 43(10): 1483–1491.
[17] Jiang Chao, Gu Xianglin, Zhang Weiping, et al. Modeling of carbonation in tensile zone of plain concrete beamsdamaged by cyclic loading[J]. Construct Build Mater, 2015(77): 479–488.
[18] 李响, 阿茹罕, 阎培渝. 水泥粉煤灰复合胶凝材料水化程度的研究[J]. 建筑材料学报, 2010, 13(5): 584–588.
LI Xiang, A Ruhan, YAN Peiyu. J Build Mater (in Chinese), 2010, 13(5): 584–588.
[19] 李响, 阎培渝, 阿茹罕. 基于Ca(OH)2含量的复合胶凝材料中水泥水化程度的评定方法[J]. 硅酸盐学报, 2009, 37(10): 1597–1601.
Li Xiang, Yan Peiyu, A Ruhan. J Chin Ceram Soc, 2009, 37(10): 1597–1601.
[20] 阎培渝, 韩方晖. 基于图像分析和非蒸发水量的复合胶凝材料的水化程度的定量分析[J]. 硅酸盐学报, 2015, 43(10): 1331–1340.
YAN Peiyu, HAN Fanghui. J Chin Ceram Soc, 2015, 43(10): 1331–1340.
[21] 郝圣旺, 孙菊. 非均质脆性材料灾变性破坏的一种敏感前兆[J]. 力学学报, 2008, 40(3): 339–344.
HAO Shengwang, SUN Ju. Chin J Theor Appl Mech (in Chinese), 2008, 40(3): 339–344.
|