首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
BaZr0.2Ti0.8O3无铅厚膜陶瓷的电卡效应
作者:简晓东 路标 李丹丹 姚英邦 梁波 陶涛 鲁圣国 
单位:广东省功能软凝聚态物质重点实验室 广东工业大学材料与能源学院 广州510006 
关键词:锆钛酸钡 厚膜陶瓷 电滞回线 电卡效应 
分类号:锆钛酸钡;厚膜陶瓷;电滞回线;电卡效应
出版年,卷(期):页码:2017,45(3):333-338
DOI:10.14062/j.issn.0454-5648.2017.03.02
摘要:

 通过流延法与常压空气气氛固相烧结工艺制备锆钛酸钡(Ba(Zr0.2Ti0.8)O3)无铅厚膜陶瓷,用X射线衍射仪、扫描电子显微镜、Agilent 4284A阻抗分析仪和RADIANT RT–66A铁电分析仪对其晶体结构、微观形貌、电学性能进行了表征,用Maxwell关系估算了材料的电卡效应,即等温熵变和绝热温变。结果表明:Ba(Zr0.2Ti0.8)O3厚膜陶瓷钙钛矿相纯且结构完整,微观结构致密;Ba(Zr0.2Ti0.8)O3厚膜陶瓷呈现弛豫型铁电体特征;材料具有良好的极化特性,耐击穿电压达20 MV/m。材料的绝热温变ΔT在电场20 MV/m及温度100 ℃时达1.2K。

 Barium zirconate titanate (i.e., Ba(Zr0.2Ti0.8)O3) thick film ceramics were prepared by a tape-casting method. Their structures, morphologies, and electric properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), impedance analysis and ferroelectric analysis, respectively. The electrocaloric effect, i.e., isothermal entropy changes and adiabatic temperature changes, was calculated by the Maxwell equations. According to the results by XRD and SEM, the thick film ceramics obtained are a pure and dense perovskite structure. The dielectric analyses indicates that the Ba(Zr0.2Ti0.8)O3 thick film ceramics show the characteristics of relax or ferroelectrics. The polarization–electric field (P–E) hysteresis loops reveal greater polarizations, and the ceramics can withstand an electric field of 20 MV/m. The adiabatic temperature change, ΔT, calculated according to the Maxwell equations and the polarization versus temperature extracted from the P–E hysteresis loops are approximately 1.2K at 100 ℃ and 20 MV/m.

基金项目:
国家自然科学基金(51372042);国家自然科学基金–广东省联合基金(U1501246);广东省自然科学基金重大基础研究培育项目(2015A030308004);广东省教育厅重大基础研究培育项目(2014GKXM039)资助。
作者简介:
简晓东(1992—),男,硕士研究生。
参考文献:

 [1] O?BOLT M, KITANOVSKI A, TUŠEK J, et al. Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives[J]. Inter J Refrigerat, 2014, 40: 174–188.

[2] O?BOLT M, KITANOVSKI A, TUŠEK J, et al. Electrocaloric vs. magnetocaloric energy conversion[J]. Inter J Refrigerat, 2014, 37: 16–27.
[3] VALANT M. Electrocaloric materials for future solid-state refrigeration technologies[J]. Progr Mater Sci, 2012, 57(6): 980–1009.
[4] PAUL J. QUO vadis, heat pump[C]// Presentation on the 23rd IIR International Congress of Refrigeration, Prague, Czech Republic, 2011.
[5] 鲁圣国, 唐新桂, 伍尚华, 等. 铁电材料中的大电卡效应[J]. 无机材料学报. 2014(1): 6–12. LU Shengguo, TANG Xingui, WU Shanghua, et al. J Inorg Mater (in Chinese), 2014(1): 6–12.
[6] 钟维烈. 铁电体物理学[M]. 北京: 科学出版社, 1996.
[7] LINES M E, GLASS A M. Principles and applications of ferroelectrics and related materials[M]. New York: Oxford University Press, 1977.
[8] 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009.
[9] KOBECO P, KURTCHATOV I V. Dielectric properties of Rochelle salt crystal[J]. Z Phys, 1930, 66: 192–205.
[10] WISEMAN G G, HUEBLER D A. Electrocaloric effect in ferroelectric Rochelle salt [J]. Phys Rev, 1963, 131(5): 2023–2027.
[11] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270–1271.
[12] LU S G, RO?I? B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect[J]. Appl Phys Lett, 2010, 97(16): 162904.
[13] LU S G, RO?I? B, ZHANG Q M, et al. Enhanced electrocaloric effect in ferroelectric poly (vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric–paraelectric transition[J]. Appl Phys Lett, 2011, 98(12): 122906.
[14] LIU P F, WANG J L, MENG X J, et al. Huge electrocaloric effect in Langmuir-Blodgett ferroelectric polymer thin films[J]. New J Phys, 2010, 12(2): 023035.
[15] LEI C, BOKOV A A, YE Z G. Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system[J]. J Appl Phys, 2007, 101(8): 84105.
[16] HORCHIDAN N, IANCULESCU A C, VASILESCU C A, et al. Multiscale study of ferroelectric-relaxor crossover in BaSnxTi1−xO3 ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3661–3674.
[17] MUELLER V, BEIGE H, ABICHT H P. Non-Debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state[J]. Appl Phys Lett, 2004, 84(8): 1341–1343.
[18] HORCHIDAN N, IANCULESCU A C, CURECHERIU L P, et al. Preparation and characterization of barium titanate stannate solid solutions[J]. J Alloys Compd, 2011, 509(14): 4731–4737.
[19] MUELLER V, JÄGER L, BEIGE H, et al. Thermal expansion in the burns-phase of barium titanate stannate[J]. Solid State Commun, 2004, 129(12): 757–760.
[20] LU S G, XU Z K, CHEN H. Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics[J]. Appl Phys Lett, 2004, 85(22): 5319.
[21] TURA V, MITOSERIU L. Ageing of low field dielectric constant and losses in (Hf, Zr)-doped BaTiO3 ceramics[J]. Eur Lett, 2000, 50(6): 810–815.
[22] DAS S K, ROUL B K. Double hysteresis loop in BaTi1–xHfxO3 ferroelectric ceramics[J]. J Mater Sci-Mater Electron, 2015, 26(8SI): 5833–5838.
[23] KALYANI A K, BRAJESH K, SENYSHYN A, et al. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3[J]. Appl Phys Lett, 2014, 104(25): 252906.
[24] CURECHERIU L P, DELUCA M, MOCANU Z V, et al. Investigation
of the ferroelectric–relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study[J]. Phase Transit, 2013, 86(7SI): 703–714.
[25] CERNEA M, MATEI I, IUGA A, et al. Preparation and characterization of Ce-doped BaTiO3 thin films by r.f. sputtering[J]. J Mater Sci, 2001, 36(20): 5027–5030.
[26] TANG X G, CHEW K H, CHAN H L W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics[J]. Acta Mater, 2004, 52(17): 5177–5183.
[27] MAITI T, GUO R, BHALLA A S. Evaluation of experimental resume of BaZrxTi1–xO3 with perspective to ferroelectric relaxor family: An overview[J]. Ferroelectrics, 2011, 425(1): 4–26.
[28] DELUCA M, VASILESCU C A, IANCULESCU A C, et al. Investigation of the composition-dependent properties of BaTi1−xZrxO3 ceramics prepared by the modified Pechini method[J]. J Eur Ceram Soc, 2012, 32(13): 3551–3566.
[29] CIOMAGA C, VIVIANI M, BUSCAGLIA M T, et al. Preparation and characterisation of the Ba (Zr, Ti)O3 ceramics with relaxor properties[J]. J Eur Ceram Soc, 2007, 27(13): 4061–4064.
[30] DOMINGOS H, QUATTRO D, SCATURRO J. Breakdown in ceramic capacitors under pulsed high voltage stress[J]. IEEE Transact Compon Hybrids Manuf Technol, 1978, 1(4): 423–428.
[31] CROSS L E. Relaxor ferroelectrics: an overview[J]. Ferroelectrics, 1994, 151(1): 305–320.
[32] BAI Y, ZHENG G, DING K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J Appl Phys, 2011, 110(9): 94103.
[33] LU S G, CAI Z H, OUYANG Y X, et al. Electrical field dependence of electrocaloric effect in relaxor ferroelectrics[J]. Ceram Inter, 2015, 41: S15–S18.
[34] LU S G, RO?I? B, ZHANG Q M, et al. Electrocaloric effect in ferroelectric polymers[J]. Appl Phys A, 2012, 107(3): 559–566.
[35] LU S G, XIONG H, WEI A, et al. Electrocaloric and electrostrictive effect of polar P (VDF–TrFE–CFE) terpolymers[J]. J Adv Dielectr, 2013, 3(2): 1350015.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com