首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Nd3+掺Na0.25K0.25Bi2.5Nb2O9压电陶瓷的结构与性能 
作者:罗雨涵 江向平 陈超 涂娜 陈云婧 江兴安 
单位:景德镇陶瓷大学材料科学与工程学院 江西省先进陶瓷材料重点实验室 江西 景德镇 333001 
关键词:铋层状 压电陶瓷 Raman 光谱 阻抗谱 
分类号:TQ174
出版年,卷(期):页码:2017,45(3):346-353
DOI:10.14062/j.issn.0454-5648.2017.03.04
摘要:

 采用固相法制备 Na0.25K0.25Bi2.5–xNdxNb2O9(NKBN–xNd3+,0≤x≤0.4,x 为摩尔分数)铋层状无铅压电陶瓷,研究了不 同 Nd3+掺杂量对 NKBN–xNd 陶瓷显微结构、电学性能的影响及 NKBN–0.20Nd3+陶瓷高温下的电导行为。结果表明:所有样 品均为单一的铋层状结构;当 Nd3+的掺杂量 x 为 0.02 时,样品的晶粒尺寸减小并趋于均匀,致密度提高;适量的 Nd3+掺杂 能降低样品的介电损耗,提高 NKBN 陶瓷的压电常数 d33。NKBN–0.20Nd3+陶瓷样品的电学性能最佳:压电常数 d33=24 pC/N, 机械品质因数 Qm=2 449,tanδ=0.40%,2Pr=1.11 μC/cm2。NKBN–0.20Nd3+样品的阻抗谱表明:在高温区域陶瓷的晶粒对电传导 起主要作用,当温度高于 600 ℃时,样品主要表现为本征电导,NKBN–0.20Nd3+和NKBN 的电导活化能分别为 1.85 和1.64 eV。

 

 Na0.25K0.25Bi2.5–xNdxNb2O9(NKBN–xNd, 0≤x≤0.40) bismuth layered structure lead-free piezoelectric ceramics were prepared by a solid-state reaction method. Effect of Nd3+ doping amount on the microstructure, electrical properties of NKBN–xNd ceramics was investigated. The high-temperature conductive behavior of NKBN-0.20Nd ceramic was analyzed. The results show that all the samples possess a single bismuth layered structure. When the Nd3+ doping content x is 0.02, the average grain size decreases, the grain size distribution becomes uniform and the density increases. A appropriate content of Nd3+ leads to the decrease of tanδ and the increase of d33. The NKBN–0.20Nd sample presents the optimal piezoelectric performance, i.e., d33=24 pC/N, Qm=2 449, tanδ=0.40%, 2Pr=1.11 μC/cm2. According to the impedance spectra of the NKBN–0.20Nd sample, the grain interior makes a major contribution to the electrical conduction process at a high temperature. At > 600 ℃, the intrinsic conduction plays a dominant role in the samples. The calculated activation energy of NKBN–0.20Nd and NKBN samples is 1.85 and 1.64 eV, respectively. 

基金项目:
国家自然科学基金(51562014,51262009);江西省自然科学 基金(20133ACB20002,20142BAB216009);江西省高等学 校“先进陶瓷材料”科技创新团队;江西省教育厅科技项 目(GJJ150911,GJJ150931,GJJ150933)资助。
作者简介:
罗雨涵(1993—),女,硕士研究生。
参考文献:

[1] WANG C M., WANG J F., ZHANG S, et al. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics[J]. Phys Status Solidi RRL, 2009, 3(2-3): 49–51.

[2] LONG C, FAN H. Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9.[J]. Dalton Trans, 2012, 41(36): 11046–54.

[3] WITHERS R L, THOMPSON J G, RAE A D. The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6[J]. J Solid State Chem, 1991, 94(2): 404–417. 

[4] JIN S K, SUN Y L, HAI J L, et al. Control of the ferroelectric and electrical properties of Nd substituted bismuth titanate ceramics[J]. J Electroceram, 2008, 21(1–4): 633–636.

[5] 孙琳, 褚君浩, 杨平雄, 等. Sr位Nd掺杂对SrBi2Nb2O9性能的影响 及机理研究[J]. 物理学报, 2009, 58(8): 5790–5797. SUN Lin, CHU Junhao, YANG Pingxiong, et al. Acta Phys Sin(in Chinese), 2009, 58(8): 5790–5797.

[6] SHAO C, LU Y, WANG D, et al. Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics[J]. J Eur Ceram Soc, 2012, 32(14): 3781–3789.

[7] LIU G Z, WANG C, GU H S, et al. Raman scattering study of La-doped SrBi2Nb2O9 ceramics[J]. J Phys D Appl Phys, 2007, 40(24): 7817–7820(4).

[8] WANG C M, WANG J F, ZHANG S, et al. Electromechanical properties of A-site (LiCe)–modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature[J]. J Appl Phys, 2009, 105(9): 094110–094110–5.

[9] WANG C M, WANG J F. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification[J]. Appl Phys Lett, 2006, 89(20): 202905(1–3).

[10] JIANG X P, YANG Q, ZHAO S L, et al. Microstructure and properties of high-temperature materials (1−x)Na0.5Bi2.5Nb2O9–xLiNbO3[J]. J Am Chem Soc, 2011, 94(4): 1109–1113.

[11] WANG X, JIANG X, JIANG H, et al. Effects of B-site Co2O3 doping on microstructure and electrical properties of Na0.25K0.25Bi2.5Nb2O9, ceramics[J]. J Alloys Compd, 2015, 646: 528–531.

[12] LIANG K, QI Y, LU C. Temperature dependent Raman scattering in ferroelectric Bi4–xNdxTi3O12 (x=0, 0.5, 0.85) single crystals[J]. J Raman Spectrosc, 2009, 40(12): 2088–2091.

[13] ZHOU Z Y, DONG X L, YAN H X. Lanthanum distribution and dielectric properties of Bi3–xLaxTiNbO9, bismuth layer-structured ceramics[J]. Scripta Mater, 2006, 55(9): 791–794.

[14] HUANG S, LI Y, FENG C, et al. Dielectric and structural properties of layer-structured Sr1−xCaxBi2Nb2O9[J]. J Am Ceram Soc, 2008, 91(9): 2933–2937.

[15] LONG C, FAN H, LI M. High temperature Aurivillius piezoelectrics: the effect of (Li, Ln) modification on the structure and properties of (Li, Ln)0.06(Na, Bi)0.44Bi2Nb2O9 (Ln=Ce, Nd, La and Y)[J]. Dalton Trans, 2013, 42(10): 3561–3570.

[16] SHI K, PENG L, LI M, et al. Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2–xWxO9 ceramics[J]. J Alloys Compd, 2015, 653:168–174.

[17] 顾大国, 李国荣, 郑嘹赢, 等. 锰对改善 CaBi4Ti4O15 高温压电陶瓷 性能的研究[J]. 无机材料学报, 2008, 23(3): 626–630. GU Daguo, LI Guorong, ZHENG Liaoying, et al. J Inorg Mater(in Chinese), 2008(3): 626–630. 

[18] 张丽娜, 李国荣, 赵苏串, 等. Nb 掺杂Bi4Ti3O12层状结构铁电陶瓷 的电行为特性研究[J]. 无机材料学报, 2005, 20(6): 1389–1395.

ZHANG Lina, LI Guorong, ZHAO Suchuan, et al. J Inorg Mater(in Chinese), 2005, 20(6): 1389–1395.

[19] 徐琴, 丁士华, 宋天秀, 等. Nd2O3 掺杂对 BCZT 陶瓷结构及介电 性能的影响,硅酸盐学报[J]. 2013, 41(3): 292–297. XU Qin, DING Shihua, SONG Tianxiu, et al. J Chin Ceram Soc, 2013, 41(3): 292–297.

[20] 杨庆, 江向平, 余祖灯, 等. Sr和Nb复合掺杂Bi4Ti3O12基高温压电 陶瓷的研究[J]. 人工晶体学报, 2011, 40(6): 1471–1477.

YANG Qing, JIANG Xiangping, Yu Zudeng, et al. J Synth Cryst(in Chinese), 2011, 40(6): 1471–1477.

[21] WATCHARAPASORN A, SIRIPRAPA P,  JIANSIRISOMBOON S. Grain growth behaviror in bismuth titanate-based ceramics[J]. J Eur Ceram Soc, 2010, 30(1): 87–93

[22] LIN S, FENG C, CHEN L, et al. Dielectric and piezoelectric properties of SrBi2xSmxNb2O9 (x=0, 0.05, 0.1, 0.2, 0.3, and 0.4) ceramics[J].J Am Chem Soc, 2007, 90(12): 3875–3881.

[23] JIANG X P, JIANG X A, CHEN C, et al.Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics[J]. J Am Ceram Soc, 2016, 99[4] 1332–1339.

[24] SELVAMANI R, SINGH G, TIWARI V S, et al. Oxygen vacancy related relaxation and conduction behavior in (1–x)NBT–xBiCrO3 solid solution[J]. Phys Status Solidi, 2012, 209(1): 118–125.

[25] FEI L J, ZHOU Z Y., HUI S P, et al. Structure and electrical properties of lanthanum-doped CaBi4Ti4O15–Bi4Ti3O12 intergrowth ferroelectric [J]. Mater Lett, 2015, 156: 165–168.

[26] LI C, WEI X., FANG L, et al. Dielectric relaxation and electrical conductivity in Ca5Nb4TiO17 ceramics[J]. Ceram Int, 2015, 41(8): 9923–9930.

[27] PENG Z, CHEN Q, LIU D, et al. Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9, Aurivillius type ceramics[J]. Curr Appl Phys, 2013, 13(7): 1183–1187.

[28] JIANG X P, JIANG X A, CHEN C, et al. Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics[J]. J Phys D Appl Phys, 2016, 49(12): 125101.

[29] 顾大国, 李国荣, 郑嘹赢,等. 锰掺杂 CBT 压电陶瓷的交流阻抗谱 研究[J]. 电子元件与材料, 2007, 26(10): 18–20.

GU Daguo, LI Guorong, ZHENG Liaoying, et al. Electr Comp Mater (in Chinese), 2007, 26(10): 18–20.

[30] 黄祯. 铋层状结构压电陶瓷电学和磁学性能研究[D]. 上海: 中国 科学院大学, 2012. HUANG Zhen. Study on the electrical and magnetic properties of bismuth layer-structured ferroelectric ceramics (in Chinese, dissertation). Beijing: Chinese Academy of Sciences, 2012.

[31] CHON U, SHIM J S, JANG H M, Compositional dependence of ferroelectric properties of highly c–axis oriented Bi4–xNdxTi3O12 film capacitors[J]. Solid State Commun, 2004, 129: 465–468.

oelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics[J]. Phys Status Solidi RRL, 2009, 3(2-3): 49–51.

 

 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com