[1] 方亮, 杨卫明. 微波介质陶瓷的研究现状与发展趋势[J]. 武汉理工大学学报, 2002, 24(2): 12–15. FANG L, YANG W M. J Wuhan Univ Technol (in Chinese), 2002, 24(2): 12–15.
[2] 干福熹. 信息材料[M]. 天津: 天津大学出版社, 2000, 200–222.
[3] WAKINO K, MINAI K, TAMUR K, et al. Microwave characteristics of (Zr,Sn)TiO4 and BaO–PbO–Nd2O3–TiO2 dielectric resonator[J]. J Am Ceram Soc, 1984, 67: 278–281.
[4] WOLFRAM G, GOBEL H E. Existence range, structural and dielectric properties of ZrxTiySnZO4 ceramics (x+y+z=2)[J]. Mater Res Bull, 1981, 16: 1455–1463.
[5] LI Y, CHEN X M. Effects of sintering conditions on microwave dielectrics properties of Ba6–3x(Sm1–yNd)8+2xTi18O54(x=2/3)[J]. J Eur Ceram Soc, 2002, 22: 715–719.
[6] YANG H, ZHANG Q L. Progress in research on low-cofired microwave dielectric ceramics and components[J]. J Chin Ceram Soc, 2008, 36(6): 866–876.
[7] KIM W S, KIM E S, YOON K H, et al. Effects of Sm3+ substitution on dielectric properties of Ca1–xSm2/3xTiO3 ceramics at microwave frequencies[J]. J Am Ceram Soc, 1999, 82(8): 2111–2115.
[8] HUANG C L, CHEN Y C. Influence of V2O5 addition to NdAlO3 ceramics on sintering temperature and microwave dielectric properties[J]. J Eur Ceram Soc, 2003, 23: 167–173.
[9] 王成, 周焕福, 方亮, 等. 低固有烧结温度LTCC微波介质陶瓷研究进展[J]. 电子元件与材料, 2012, 31(7): 76–79. WANG C, ZHOU H F, FANG L, et al. Elec Compon Mater (in Chinese), 2012, 31(7): 76–79.
[10] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review[J]. Inter Mater Rev, 2008, 53(2): 57–90.
[11] LIAO Q W, LI L X, REN X, et al. A low sintering temperature low loss microwave dielectric material ZnZrNb2O8[J]. J Am Ceram Soc, 2012, 95: 3363–3365.
[12] LI L, SUN H, CAI H, et al. Microstructure and microwave dielectric characteristics of ZnZrNb2O8 and (Zn0.95M0.05)ZrNb2O8 (M=Ni, Mg, Co and Mn) ceramics[J]. J Alloys Compd, 2015, 639: 516–519.
[13] HUANG C L, YANG W R. Effect of CuO addition to Nd(Zn1/2Ti1/2)O3 ceramics on sintering behavior and microwave dielectric properties[J]. Mater Lett, 2009, 63: 103–105.
[14] BUTEE S, KULKARNI A R, PRAKASH O, et al. Significant enhancement in quality factor of Zn2TiO4 with Cu-substitution[J]. Mater Sci Eng B, 2011, 176: 567–572.
[15] TANG B, YU S Q. The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics[J]. J Alloys Compd, 2013, 551: 463–467.
[16] AHN C W, NAHM S, YOON S J, et al. Microstructure and microwave dielectric properties of (1–x)Ba(Co1/3Nb2/3)O3–xBa(Zn1/3Nb2/3)O3 ceramics[J]. J Appl Phys, 2003, 42: 6964–6968.
[17] CHEN Y C, TSAI R J, WU C Y, et al. Microwave dielectric properties and microstructures of Nd(Mg0.5Sn0.5–xTix)O3 ceramics[J]. Ceram Int, 2012, 34: 2927–2934.
[18] ZHANG C, YI L, CHEN X M, et al. Improvement of microwave dielectric characteristics in SrNdAlO4 ceramics by Ca-substitution[J]. Ceram Int, 2014, 40: 6077–6082.
[19] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J Appl Phys, 1993, 73(1): 348–366.
[20] 宋福生, 李月明, 沈宗洋, 等. Zn(1–x)MgxZrNb2O8微波介质陶瓷的结构与性能研究[J]. 人工晶体学报, 2015, 44(8): 2225–2230. SONG F S, LI Y M, SHEN Z Y, et al. J Artific Cryst (in Chinese), 2015, 44(8): 2225–2230.
[21] 关振铎, 张中太, 焦金生. 无机材料物理性能, 1版[M]. 北京: 清华大学出版社, 1992.
[22] TANG B, YU S Q. The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics[J]. J Alloys Compd, 2013, 551: 463–467.
|