首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
空心微珠轻质陶粒的制备与性能
作者:李志君1 苏振国2 李亮3 米海惠1 孟文清1 黄勇2 杨金龙1 2 
单位:1. 河北工程大学土木工程学院 河北邯郸 056038  2. 清华大学材料学院新型陶瓷与精细工艺国家重点实验室 北京100084  3. 吉林大学材料科学与工程学院 长春130025 
关键词:煤矸石空心微珠 玻璃空心微珠 表观密度 颗粒抗压强度 
分类号:TB32
出版年,卷(期):页码:2017,45(3):384-392
DOI:10.14062/j.issn.0454-5648.2017.03.10
摘要:

 以煤矸石空心微珠和玻璃空心微珠坯体为主要原料,采用滚动成球法制备陶粒生坯,经烘干、烧结,得到轻质陶粒,研究了烧结温度、保温时间以及玻璃粉添加量对空心微珠轻质陶粒性能的影响。结果表明:随着烧结温度的升高,陶粒的表观密度和吸水率逐渐增大,颗粒抗压强度先增大后逐渐减小;烧结温度为700 ℃,单颗粒抗压强度为200.5N,达到最大值。随着保温时间的延长,颗粒抗压强度先增大后减小。加入玻璃粉可以明显提高陶粒的单颗粒抗压强度,并且随着玻璃粉加入量的增大,颗粒抗压强度显著增大,700 ℃烧结的样品中玻璃粉加入量为25%(质量分数)时,单颗粒抗压强度增大到327.5N,提高了63.3%。

 The lightweight ceramsite was prepared with hollow microspheres in coal gangue and green glass hollow microspheres as raw materials. After the pelletized green bodies are dried and sintered, the lightweight ceramsite was obtained. The influences of sintering temperature, holding time and glass powder content on the properties of lightweight ceramsite were investigated. The results show that the apparent density and water absorption rate of ceramsite increase gradually while the compressive strength firstly increases and then decreases with the increase of sintering temperature. When the ceramsite is sintered at 700 ℃, the maximum compressive strength (i.e., 200.5 N) is obtained. The compressive strength of the ceramsite firstly increases and then decreases as the holding time increases. Adding glass powder can improve the compressive strength. The compressive strength increases with the increase of glass powder content. The compressive strength of ceramsite with a glass powder content of 25% (in mass fraction) sintered at 700 ℃ is 327.5 N, which is increased by 63.3%, compared to that of ceramsite without any glass powder.

基金项目:
国家自然科学基金(51572140)。
作者简介:
李志君(1991—)女,硕士研究生。
参考文献:

 [1] 李国昌, 王萍, 魏春城. 煤矸石陶粒滤料的制备及性能研究[J]. 金属矿山, 2007(2): 78–83. LI Guochang, WANG Ping, WEI Chuncheng. Metal Mine (in Chinese), 2007(2): 78–83.

[2] 刘宁, 刘开平, 荣丽娟, 等. 煤矸石及其在建筑材料中的应用研究[J]. 混凝土与水泥制品, 2012(9): 74–76. LIU Ning, LIU Kaiping, RONG Lijuan, et al. China Concr Cem Product(in Chinese), 2012(9): 74–76.
[3] 左鹏飞. 煤矸石的综合利用方法[J]. 煤炭技术, 2009, 28(1): 186–189. ZUO Pengfei. Coal Technol(in Chinese), 2009, 28(1): 186–189.
[4] 郭彦霞, 张园园, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443-2453. GUO Yanxia, ZHANG Yuanyuan, CHENG Fangqin. CIESC J (in Chinese), 2014, 65(7): 2443-2453.
[5] WANG X M, ZHOU C C, LIU G J, et al. Transfer of metals from soil to crops in an area near a coal gangue pile in the Guqiao coal mine, China [J]. Anal Lett, 2013, 46(12): 1962–1977.
[6] 谢国帅, 孔亚宁, 徐志惠, 等. 废弃玻璃利用现状及其在混凝土材料领域的应用[J]. 混凝土, 2012(6): 80–82. XIE Guoshuai, KONG Yaning, XU Zhihui, et al. Concrete(in Chinese), 2012(6): 80–82.
[7] 李虎杰, 陶军. 煤矸石制备高强陶粒的试验研究[J]. 非金属矿, 2010, 33(3): 20–22. LI Hujie, Tao Jun. Non–Met Min(in Chinese), 2010, 33(3): 20–22.
[8] 陈彦文, 王宁, 潘文浩, 等. 煤矸石陶粒制备工艺的优化实验[J]. 硅酸盐通报, 2015, 34(3): 841–845. CHEN Yanwen, WANG Ning, PAN Wenhao, et al. Bull Chin Ceram Soc(in Chinese), 2015, 34(3): 841–845.
[9] 杨稔. 煤泥、粉煤灰、煤矸石制备陶粒及应用基础研究[D]. 昆明: 昆明理工大学, 2010. YANG Ren. Preparation and application of ceramsite by using coal slime, fly ash and coal gangue (in Chinese, dissertation). Kunming: Kunming Univ Sci Technol, 2010.
[10] 程伟. 高强复合陶粒的制备及轻骨料混凝土氯离子渗透性的研究[D]. 大连: 大连理工大学, 2013. CHENG Wei. Preparation of high-strength composite ceramsite and chloride permeability of lightweight aggregate concrete (in Chinese, dissertation). Dalian: Dalian Univ Technol, 2013.
[11] SU Z G, XI X Q, HU Y J, et al. A new Al2O3 porous ceramic prepared by addition of hollow spheres [J]. J Porous Mater, 2014, 21(5): 601–609.
[12] QI F, XU X X, XU J, et al. A novel way to prepare hollow sphere ceramics [J]. J Am Ceram Soc, 2014, 97(10): 3341–3347.
[13] YANG J L, XU X X, WU J M, et al. Preparation of Al2O3 poly-hollow microsphere (PHM) ceramics using Al2O3 PHMs coated with sintering additive via co-precipitation method [J]. J Eur Ceram Soc, 2015, 35(9): 2593–2598.
[14] 徐星星, 齐飞, 王修慧, 等. 空心球包覆处理制备氧化铝多孔陶瓷[J]. 硅酸盐学报, 2014, 42(9): 1134–1139. XU Xingxing, QI Fei, WANG Xiuhui, et al. J Chin Ceram Soc, 2014, 42(9): 1134–1139.
[15] 牛同健, 余娟丽, 刘炜, 等. 聚空心球对氧化铝陶瓷性能的影响[J]. 硅酸盐学报, 2012, 40(4): 507–512. NIU Tongjian, YU Juanli, L Wei, et al. J Chin Ceram Soc, 2012, 40(4): 507–512.
[16] WU J M, ZHANG X Y, YANG J L. Novel porous Si3N4 ceramics prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent [J]. J Eur Ceram Soc, 2014, 34(5): 1089–1096.
[17] ZHANG X Y, WU J M, YANG J L. Pore morphology designs of porous Si3N4-based ceramics using Si3N4 and Al2O3 poly-hollow microspheres as pore-forming agents [J]. Mater Lett, 2015, 144(1): 39–42.
 
[18] 侯博智, 苏振国, 高宏, 等. 粉煤灰空心微珠多孔陶瓷的结构与性能[J]. 硅酸盐学报, 2015, 43(12), 1747–1752. HOU Bozhi, SU Zhenguo, GAO Hong, et al. J Chin Ceram Soc, 2015, 43(12), 1747–1752.
[19] 吕瑞芳, 苏振国, 刘炜, 等. 煤矸石空心球多孔材料的制备及性能研究[J]. 机械工程学报, 2015, 51(2): 71–77. LÜ Ruifang, SU Zhenguo, LIU Wei, et al. J, Mech Eng(in Chinese), 2015, 51(2): 71–77.
[20] 杨金龙, 席小庆, 葛国军等. 一种制备空心陶瓷微珠方法与装置[P]. CN Patent, 101870588, 2010–10–27. YANG Jinlong, XI Xiaoqing, GE Guojun, et al. A method and a device of the preparation of hollow ceramic microspheres. CN Patent, 101870588, 2010–10–27.
[21] QU Y N, XU J, SU Z G, et al. Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique [J]. Ceram Intr, 2016, 42(2): 2370–2377.
[22] 郗斐, 赵大传. 轻质/超轻粉煤灰陶粒的研制及陶粒膨胀机理的探讨和应用[J]. 功能材料, 2010, 41(z3): 518–523. XI Fei, ZHAO Dachuan. J Funct Mater(in Chinese), 2010, 41(z3): 518–523.
[23] 王乐乐, 杨鼎宜, 刘亚东, 等. 轻质污泥陶粒的研制及其膨胀机理的探讨[J]. 混凝土, 2013, (4): 40–43. WANG Lele, YANG Dingyi, LIU Yadong, et al. Concrete, 2013, (4): 40–43.
[24] 丁庆军,王承,黄修林. 污泥页岩陶粒的焙烧膨胀机理探讨[J]. 新型建筑材料, 2014, 41(11): 1–4. DING Qingjun, WANG Cheng, HUANG Xiulin. New Build Mater(in Chinese), 2014, 41(11): 1–4.
[25] 罗晖, 钱觉时, 陈伟, 等. 污水污泥烧胀特性[J]. 硅酸盐学报, 2010, 38(7): 1247–1252. LUO Hui, QIAN Jueshi, CHEN Wei, et al. J Chin Ceram Soc, 2010, 38(7): 1247–1252.
[26] 杨金龙, 苏振国, 席小庆, 等. 一种利用废玻璃制备微孔泡沫玻璃的方法[P]. CN Patent, 103553343, 2014–2–5. YANG Jinlong, SU Zhenguo, XI Xiaoqing, et al. A method for preparation of microcellular foam glass using waste glass. CN Patent, 103553343, 2014–2–5.
[27] 刘倩, 金会心, 朱明燕, 等. 煤矸石焙烧过程中的物相转化及硅铝活性研究[J]. 湿法冶金, 2014, 33(3): 222–225. LIU Qian, JIN Huixin, ZHU Mingyan, et al. Hydrometall China(in Chinese), 2014, 33(3): 222–225.
[28] 李永峰, 王万绪, 杨效益. 煤矸石热活化及相变分析[J]. 硅酸盐学报, 2007, 35(9): 1258–1263. LI Yongfeng, WANG Wanxu, YANG Xiaoyi. J Chin Ceram Soc, 2007, 35(9): 1258–1263.
[29] 徐长明, 王士维, 黄校先, 等. 方石英的析晶与无定型化[J]. 无机材料学报, 2007, 22(4), 577–582. XU Changming, WANG Shiwei, HUANG Xiaoxian, et al. J Inorg Mater(in Chinese), 2007, 22(4), 577–582.
[30] 钱觉时, 罗晖, 陈伟, 等. 污水污泥页岩陶粒的烧成工艺与性能[J]. 材料科学与工艺, 2010, 18(6): 852–856. QIAN Jueshi, LUO Hui, CHEN Wei, et al. Mater Sci Technol(in Chinese), 2010, 18(6): 852–856.
[31] 郭威敏. 拜尔法低硅体系赤泥烧胀陶粒制备及其在环境修复材料中的应用[D].桂林: 桂林理工大学, 2011. GUO Weimin. Preparation of sintering-expanded haydite with low silicon red mud from bayer process and its Application to ecological restoration material (in Chinese, dissertation). Guilin: Guilin Univ Technol, 2011.
[32] 张雪华. 非金属矿复合材料的制备及性能研究[D]. 信阳: 信阳师范学院, 2014. ZHANG Xuehua. Study on preparation and properties of ceramsite with non-metallic minerals (in Chinese, dissertation). Xinyang: Xinyang Normal Univ, 2014.
[33] 赵建新, 王林江, 谢襄漓. 利用拜耳法赤泥制备烧胀陶粒的研究[J]. 矿产综合利用, 2009(4): 41–44. ZHAO Jianxin, WANG Linjiang, XIE Xiangli. Multip Utiliz Min Res(in Chinese), 2009(4): 41–44.
[34] 黄少文, 郭灿贤, 徐玉华. 利用红泥岩制备轻质高强球形陶粒试验研究, 非金属矿, 2004, 27(6): 11–13. HUANG Shaowen, GUO Chanxian, XU Yuhua. Non-Met Min(in Chinese), 2004, 27(6): 11–13.
[35] 鲍腾, 陈冬, 彭书传, 等. 凹凸棒石基多孔陶粒的制备及性能[J]. 复合材料学报, 2012, 29(5): 106–112. BAO Teng, CHEN Dong, PENG Shuchuan, et al. Acta Mater Compos Sin(in Chinese), 2012, 29(5): 106–112.
[36] 曲烈, 王渊, 杨久俊, 等. 城市污泥–玻璃粉轻质陶粒制备及性能研究[J]. 硅酸盐通报, 2016, 35(3), 970–974. QU Lie, WANG Yuan, YANG Jiujun, et al. Bull Chin Ceram Soc(in Chinese), 2016, 35(3): 970–974.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com