首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硅–铝溶胶作为耐火浇注料胶结剂的研究现状与展望
作者:王玉龙 李享成 陈平安 朱伯铨 
单位:武汉科技大学 耐火材料与冶金国家重点实验室 武汉430081 
关键词:溶胶结合剂 浇注料 应用 展望 
分类号:TQ175.79
出版年,卷(期):页码:2017,45(3):422-432
DOI:10.14062/j.issn.0454-5648.2017.03.15
摘要:

 对比介绍了几种浇注料结合系统、铝酸钙水泥作为浇注料结合剂的优缺点以及溶胶结合剂替代铝酸钙水泥的趋势。对硅溶胶和铝溶胶的硬化机理进行了着重分析,硅溶胶的胶凝化与硅氧烷的形成密切相关,可通过改变pH值、添加硬化剂、干燥、冰冻等方式实现硅溶胶胶凝化,而铝溶胶的胶凝化主要通过改变pH值、改变离子强度、改变温度来实现。同时介绍了显著影响浇注料施工性能的分散剂的分散机理和研究现状,突出了硅溶胶结合浇注料中分散剂的作用特点,在偏碱性浇注料中硅溶胶颗粒表面会带有强烈的负电荷,为提高分散剂在硅溶胶颗粒表面的吸附量,可以选择具有较高pKa官能团的分散剂。评述了溶胶结合剂在浇注料中应用的优势,主要体现在可以更快更安全的干燥、具有更高的烧结性、体积稳定性好、中温强度高、高温机械性能更好等优点。最后预期了溶胶作为浇注料结合剂其未来的研究重点。

 This review briefly introduces the different binding systems for refractory castables, and represents the benefits of replacing calcium aluminate cement by colloidal binders. The setting mechanisms of colloidal bonded castables were reviewed for effective control of the setting process. The gelling of silica colloids is closely related to the formation of siloxane network. The suspension of silica colloids is commonly destabilized by controlling the pH value, addition of setting agents, drying the suspension and freezing the sol. The suspension of alumina colloids is commonly destabilized by controlling the pH value, changing the ionic strength and temperature. The use of dispersions in colloidal bonded castables was introduced, highlighting the difference of dispersing mechanism in colloidal systems. The surface of silica colloids in slightly alkaline castables system has negative charge, thus selecting the dispersant with a higher pKa value for greater adsorption. The advantages of silica/alumina colloids as a refractory binder were described including a faster drying, a higher sinterability, a superior mechanical strength at intermediate temperatures, better thermomechanical properties at high temperatures. In addition, the future studies on the colloidal bonded refractory castables were also outlined.

基金项目:
国家自然科学基金(51374162);湖北省自然科学基金重点项目(2014CFA091)资助。
作者简介:
王玉龙(1989—),男,博士研究生。
参考文献:

 [1] 田守信. 钢包操作条件对耐火材料使用寿命的影响[J]. 山东冶金, 2009, 31(5): 20–23. TIAN Shouxin. Shandong Met (in Chinese), 2009, 31(5): 20–23.

[2] 倪文, 李翠伟, 邹一. 水泥加入量对刚玉浇注料性能的影响[J]. 耐
火材料, 1997, 32(2): 97–100. NI Wen, LI Cuiwei, ZOU Yi. Refractory (in Chinese), 1997, 32(2): 97–100.
[3] 朱伯铨, 王玉龙, 李享成. 含镁铝尖晶石的铝酸钙水泥中物相分布状态对流变特性的影响[J]. 硅酸盐学报, 2014, 41(11): 40–44. ZHU Boquan, WANG Yulong, LI Xiangcheng. J Chin Ceram Soc, 2014, 41(11): 40–44.
[4] 李再耕, 周宁生. 不定形耐火材料技术演革[C]//2001年全国不定形耐火材料学术会议, 青岛, 2001: 1–4. LI Zaigeng, ZHOU Ningsheng. Evolution and revolution of refractory castables[C]// 2001 national monolithic refractories conference, Qingdao, 2001: 1–4.
[5] LUZ A P, PANDOLFELLI V C. Halting the calcium aluminate cement cement hydration process[J]. Ceram Int, 2011, 37: 3789–3793.
[6] KO Y C, CHAN C F. Effect of spinel content on hot strength of alumina-spinel castables in the temperature range 1 000–1 500℃[J]. J Eur Ceram Soc, 1999, 19: 2633–2639.
[7] BRAULIO M A, MILANEZ D H, SAKO E Y, et al. Expansion behavior of cement-bonded alumina–magnesia refractory castables[J]. Am Ceram Soc Bull, 2007, 86(12): 9201–9206.
[8] WANG Y L, LI X C, ZHU B Q, et al. Microstructure evolution during the heating process and its effect on the elastic properties of CAC-bonded alumina castables[J] Ceram Int, 2016, 42(9): 11355–11362.
[9] MA W, BROWN P W. Mechanisms of reaction of hydratable aluminas[J]. J Am Ceram Soc, 1999, 82(2): 453–456
[10] CARDOSO F A, INNOCENTINI M D M, MIRANDA M F S, et al. Drying behavior of hydratable alumina-bonded refractory castables[J]. J Eur Ceram Soc, 2004, 24(5): 797–802
[11] ANDERSON M. Better refractories through nanotechnology[J]. Ceram Ind Mag, 2005, 155(10): 29–35.
[12] JIQUAN X, YUNTAO P, DAYONG X, et al. The characteristics of silica-sol combining refractories[J]. Adv Mater Res, 2011: 288–291.
[13] MUKHOPADHYAY S, GHOSH S, MAHAPATRA M K, et al. Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable[J]. Ceram Int, 2002, 28: 719–729.
[14] 张寒, 赵惠忠, 余俊. 锆质溶胶在刚玉质浇注料基质中的应用[J]. 耐火材料, 2010, 44(3): 180–183. ZHANG Han, ZHAO Huizhong, YU Jun. Refractory (in Chinese), 2010, 44(3): 180–183.
[15] Nouri-Khezrabad M. Braulio M A L. Pandolfelli V C. et al. Nano-bonded refractory castables[J]. Ceram Int, 2013, 39(4): 3479–3497.
[16] ILER R K. The Chemisty of Silica, Solubility, Polymerization. Colloid and Surface Properties and Biochemistry[M]. NewYork: John Wiley, 1979: 866.
[17] RICHARD N, LEQUEUX N, BOCH P. Low-shrinkage refractories bonded with high-alumina cement mixed with colloidal silica[J]. J Phys IV, 1993, 111(3): 1403–1406.
[18] 任岳荣. 铝溶胶的结构、特性及其应用[J]. 无机盐工业, 1989(1): 30–33. REN Yuerong. Inorg Chem Ind (in Chinese), 1989(1): 30–33.
[19] STUDART A R, PANDOLFELLI V C, TERVOORT E, et al. In situ coagulation of high-alumina zero-cement refractory castables[J]. J Am Ceram Soc, 2002, 85(8): 1947–1953.
[20] PRABHAKARAN K, TAMBE S P, MELKERI A, et al. Mechanical properties of wet-coagulated alumina bodies prepared by direct coagulation casting using a MgO coagulating agent[J]. J Am Ceram Soc, 2008, 91(11): 3608–3612.
[21] PRABHAKARAN K, KUMBHAR C S, RAGHUNATH S, et al. Effect of concentration of ammonium poly (acrylate) dispersant and MgO on coagulation characteristics of aqueous alumina direct coagulation casting slurries[J]. J Am Ceram Soc, 2008, 91(6): 1933–1938.
[22] KIM H G, PARK J, LEE G H. Surface coating of Al nanoparticles by using a wet ball milling method: A facile synthesis and characterization of colloidal stability[J]. Curr Appl Phys, 2013, 13(7): 1218–1224.
[23] HIDBE P C, GRAULE T J, GAUCKLER L J. Competitive adsorption of citric acid and poly (viny1 alcohol) onto alumina and its influence on the binder migration during drying[J]. J Am Ceram Soc, 1995, 78: 1775–1780.
[24] HIDBE P C, GRAULE T J, GAUCKLER L J, Citric Acid–A dispersant for aqueous alumina suspension[J]. J Am Ceram Soc, 1996, 79(7): 1857–1867.
[25] HIDBE P C, GRAULE T J, GAUCKLER L J. Citric Acid–A dispersant for aqueous alure on properties of electrostatically stabilized aqueous alumina suspensions[J]. J Eur Ceram Soc, 1997, 17: 239–249.
[26] STUDART A R, PANDOLFELLI V C, TERVOORT E. Selection of dispersants for high-alumina zero-cement refractory castables[J]. J Eur Ceram Soc, 2003, 23(7): 997–1004.
[27] Nouri-Khezrabad M, Salvini V R, Luz A P, et al. Rheological performance of High alumina nano-bonded refractory castables containing carboxylic acids as additives[J]. Ceram Int, 2015, 41: 11251–11256.
[28] NOURI-KHEZRABAD M, LUZ A P, GOLESTANI-FARD F, et al. Citric acid role and its migration effects in nano-bonded refractory castables[J]. Ceram Int, 2014, 40(9A): 14523–14527.
[29] SALOMAO R, PANDOLFELLI V C. Citric acid as anti-hydration additive for magnesia containing refractory castables[J]. Ceram Int, 2011, 37: 1839–1842.
[30] SOUZA A D V, ARRUDA C C, FERNANDES L, et al. Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenicagent in castable ceramics[J]. J Eur Ceram Soc, 2015, 35: 803–812.
[31] STUDART A R, PANDOLFELLI V C, TERVOOT E, et al. Gelling of alumina suspensions using alginic acid salt and hydroxyaluminum diacetate[J]. J Am Ceram Soc, 2002, 85(11): 2711–8.26.
[32] ANJOS R D, ISMAEL M R, OLIVERIRA I R, et al, Workability and setting parameters evaluation of colloidal silica bonded refractory suspensions[J]. Ceram Int, 2008, 34(1): 165–171.
[33] ISMAEL M R, ANJOS R D, SALOMÃO R, et al. Colloidal silica as a nanostructured binder for refractory castables[J]. Refract Appl News, 2006, 11(4): 16–20.
[34] PARR C, WÖHRMEYER C, The advantages of calcium aluminate cement as a castable bonding system[C]//in: Proceedings of St Louis Section Meeting of American Ceramic Society, St Louis, 2006: 20–23.
[35] ISMAEL M R, SALOMÃO R, POLITO L A, et al. Colloidal silica and hydratable alumina as refractory binder agents[J]. Cerâmica, 2007, 53: 142–146
[36] BRAULIO M A L, TONTRUP C, MEDEIROS J, et al. Colloidal alumina as a refractory binder[C]// in: Proceedings of 35th Alafar congress, Lima, Peru, 2010: 10–13.
[37] BRAULIO M A L, PIVA M F L, SILVA G F L, et al. In situ spinel expansion design by colloidal alumina suspension addition[J]. J Am Ceram Soc, 2009, 92(2): 559–562.
[38] SAKO E Y, BRAULIO M A L, ZINNGREBE E, Improved corrosion resistance of alumina–spinel castable by colloidal alumina addition[C]//in: Proceedings of UNI-TECR’11 Congress, Kyoto, Japan, 2011: 4–11.
[39] GRASSET-BOURDEL R, ALZINA A, HUGER M, et al. Tensile behaviour of magnesia-spinel refractories: comparison oftensile and wedge splitting tests[J]. J Eur Ceram Soc, 2013, 33(5): 913–923.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com