首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
HNO3浓度对水热合成Bi2WO6形貌及光催化性能的影响
作者:朱圣 江向平 李菊梅 李小红 陈云婧 
单位:景德镇陶瓷大学材料科学与工程学院 江西省先进陶瓷重点实验室 江西 景德镇 333001 
关键词:水热法 钨酸铋 硝酸浓度 光催化 
分类号:O643.36
出版年,卷(期):页码:2017,45(4):563-571
DOI:
摘要:

 采用、比表面积分分析仪水热法,通过调节前驱体溶液中的HNO3浓度合成了不同形貌的Bi2WO6。利用X射线衍射、Raman光谱、扫描电子显微镜和紫外–可见漫反射谱对样品进行表征,探讨了Bi2WO6的形成机理。以氙灯模拟太阳光,考察了样品对罗丹明B(RhB)的光催化性能并分析了光催化机理。结果表明:改变前驱体中的HNO3浓度对Bi2WO6样品的物相组成和晶体结构没有明显影响,但是对其形貌和光催化性能有显著影响。当前驱体溶液中的HNO3浓度为0.2 mol/L时,所制备的花状微球Bi2WO6在氙灯辐射120 min后对RhB的降解率达到82.5%;在3次回收利用后仍表现出了良好的稳定性。

 

 Bi2WO6 particles with various morphologies were prepared by a hydrothermal method. The effect of HNO3 concentration in the precursor solution on the morphology and photocatalytic performance of Bi2WO6 particles was investigated. The as-synthesized Bi2WO6 samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, specific surface area measurement and UV-Vis diffuse reflection spectroscopy, respectively. The formation mechanism of Bi2WO6 particles was discussed. The photocatalytic activitity of the Bi2WO6 was evaluated via the degradation of Rhodamine B(RhB) under simulated sunlight (xenon lamp). The photocatalytic mechanism of Bi2WO6 was also analyzed. The results reveal that the phase composition and the crystal structure of Bi2WO6 hardly change, but the morphology and the photocatalytic efficiency of Bi2WO6 distinctly change when the concentration of HNO3 in the precursor solution varies. The as-prepared flower-like Bi2WO6 microspheres with 0.2 mol./L HNO3 in the precursor solution show the maximum photocatalytic activities, and the photodegradation efficiency is 82.75% within 120 min irradiation under simulated sunlight. Moreover, the sample is still stable after using for three recycles.

 
基金项目:
国家自然科学基金(51562014,51262009);江西省教育厅项目(GJJ150933);江西自然科学基金(20133ACB20002,20142BAB 216009,20161BAB2016129);江西省高等学校“先进陶瓷材料”科技创新团队、景德镇陶瓷大学研究生创新资金(JYC201515)资助项目。
作者简介:
朱 圣(1993—),男,硕士研究生。
参考文献:
 [1] FUJISHIMA A, HONDA K. Photolysis-decomposition of water at the surface of an irradiated semiconductor [J]. Nature, 1972, 238(5385): 37–38.
[2] 陈石林, 杨亦宸, 戴高鹏, 等. 微波水热两步法合成花状Ag@AgBr/Bi2WO6及其可见光催化性能[J]. 硅酸盐学报, 2016, 44(7): 1059–1063. 
CHEN ShiLin, YANG Yichen, DAI Gaopeng, et al. J Chin Ceram Soc, 2016, 44(7): 1059–1063.
[3] SHI R, HUANG G L, LIN J, et al. Photocatalytic activity enhancement for Bi2WO6 by fluorine sub -stitution[J]. J Phys Chem C, 2009, 113: 19633–19638. 
[4] CARMONA R J, VELASCO L F, HIDALGO M C, et al. Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives[J]. Appl Catal A, 2015, 505: 467–477.
[5] ZHANG Z, WANG W, SHANG M, et al. Low-temperature combustion synthesis of Bi2WO6 nan-oparticles as a visible-light-driven photocatalyst[J]. J Hazard Mater, 2010, 177(1/3): 1013–1018.
[6] ZHANG G, FAN L, LI M, YANG J, et al. Synthe-sis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activit-y for degradation of 4BS[J]. J Phys Chem Solids, 2010, 71(4): 579–582.
[7] FU H, ZHANG L, YAO W, et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Appl Catal B, 2006, 66(1/2): 100–110.
[8] ANUKORN P, ARIN M, PHATTRANIT D, et al. Effect of pH on visible-light-driven Bi2WO6 nano-structured catalyst synthesized by hydrothermal method[J]. Superlatt Microstruct, 2015, 78: 106–115.
[9] TIAN Y, HUA G, XU W, et al. Bismuth tungstate nano/microstructures: Controllable morphologies, growth mechanism and photocatalytic properties[J]. J Alloy Compd, 2011, 509: 724–730.
[10] 唐洁, 展红全, 江向平, 等. 不同酸性助剂水热合成钨酸铋的制备及光催化性能研究[J]. 人工晶体学报, 2013, 42(6): 1092–1097.
TANG Jie, ZHAN Hongquan, JIANG Xiangping, et al. J Synth Cryst (in Chinese), 2013, 42(6): 1092–1097.
[11] HUANG H, CHEN H F, XIA Y, et al. Controllable synthesis and Visible-light-responsive photocatalytic activity of Bi2WO6 fluffy microsphere wit -h hierarchical architecture[J]. J Colloid Interface Sci, 2012, 370: 132–138.
[12] FU Y, CHANG C, CHEN P, et al. Enhanced photocatalytic performance of boron doped Bi2WO6 nanosheets under simulated solar light irradiation[J]. J Hazard Mater, 2013, 254/255(6): 185–192.
[13] GE M, LIU L. Sunlight-induced photocatalytic performance of Bi2WO6 hierarchical microspheres synthesized via a relatively green hydrothermal route[J]. Mater Sci Semicond Process, 2014, 25: 258–263.
[14] ZHANG L, WANG W, ZHOU L, et al. Bi2WO6, Nano-and Microstructures: Shape control and associated visible-light-driven photocatalytic activities[J]. Small, 2007, 3(9): 1618–1625.
[15] ZHANG Q, CHEN J, XIE Y, et al. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6[J]. Appl Surf Sci, 2016, 368: 332–340.
[16] 陈渊, 刘国聪, 李志友, 等. 柠檬酸辅助水热法制备可见光高效去除甲基橙的Bi2WO6纳米片[J]. 催化学报, 2011, 32(10): 1631–1638.
CHEN Yuan, LIU Guocong, LI Zhiyou, et al. Chin J Catal (in Chinese), 2011, 32(10): 1631–1638.
[17] SONG X C, LI W T, HUANG W Z, et al. Enhanced photocatalytic activity of cadmium-doped Bi2WO6 nanoparticles under simulated solar light[J]. J Nanopart Res, 2015, 17(3): 1–10.
[18] WANG M, QIAO Z, FANG M, et al. Synthesis of Er-doped Bi2WO6 and enhancement in photocatalytic activity induced by visible light[J]. RSC Adv, 2015, 5(115): 94887–94894.
[19] CUI Y M, LI H Q, HONG W S, et al. The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6 powder[J]. Powder Technol, 2013, 247: 11–160.
[20] HONG S S, MAN S L, PARK S S, et al. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol[J]. Catal Today, 2003, 847: 99–105.
[21] CHEN S, TANG W M, HU Y F, et al. The preparation and characterization of composite bismuth tungsten oxide with enhanced visible light photocatalytic activity [J]. Cryst Eng Comm, 2013, 15: 7943–7950. 
[22] CAO R R, HUANG H W, TIAN N, et al. Novel Y doped Bi2WO6 photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation[J]. Mater Charact, 2015, 101: 166–172.
[23] SHAN G Q, FU Y, CHU X L, et al. Highly active magnetic bismuth tungstate/magnetite composite under visible light irradiation in the presence of hydrogen peroxide[J]. J Colloid Interface Sci, 2015, 444: 123–131.
[24] ZHAI J L, YU H W, LI H Y, et al. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres[J]. Appl Surf Sci, 2015, 344: 101–106.
[25] LIU Y M, TANG H B, LV H, et al. Facile hydrothermal synthesis of TiO2/Bi2WO6 hollow microsphere with enhanced visible-light photoactivity[J]. Powder Technol, 2015, 283: 246–253.
[26] CHEN S H, YIN Z, LUO S L, et al. Preparation of magnetic Fe3O4/SiO2/Bi2WO6 microspheres and their application in photocatalysis[J]. Mater Res Bull, 2013, 48: 725–729.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com