[1] DU X and HE J. Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications[J]. Nanoscale, 2011, 3 (10): 3984–4002.
[2] CHAUDHURI G R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem Rev, 2012, 112 (4): 2373–2433.
[3] JEONG G H, KIM E G, KIM S B, et al. Fabrication of sulfonic acid modified mesoporous silica shells and their catalytic performance with dehydration reaction of d–xylose into furfural[J]. Micropor Mesopor Mater, 2011, 144 (1–3): 134–139.
[4] JI Y J, ZHANG B, XU L, et al. Core/shell structured Al–MWW@B–MWW zeolites for shape–selective toluene disproportionation to para–xylene[J]. J Catal, 2011, 283 (2): 168–177.
[5] LI W, YANG J P, WU Z X, et al. A versatile kinetics controlled coating method to construct uniform porous TiO2 shells for multifunctional core shell structure[J]. J Am Chem Soc, 2012, 134 (29): 11864–11867.
[6] LI W, YUE Q, DENG Y H, et al. Ordered mesoporous materials based on interfacial assembly and engineering[J]. Adv Mater, 2013, 25 (37): 5129–5152, 5128.
[7] LI J J, YANG C J, WU Y Z, et al. A strategy for optical site–specific oxygen sensing: Construction and characterization of a Ru(II) modified magnetic luminescent hybrid composite[J]. Inorg Chim Acta, 2016, 441: 1–8.
[8] YANG X Z and LI Y X. Construction and O2 sensing performance of a core–shell structured magnetic mesoporous composite functionalized with a ruthenium complex[J]. Micropor Mesopor Mater, 2015, 215: 84–90.
[9] VENKATATHRI N, YUN D S , YOO J W. Influence of catalyst and solvent on the preparation of silica particles with mesoporous shell[J]. Mater Res Bull, 2009, 44 (6): 1317–1322.
[10] LI Y X, LIU Z C, XIE J P, et al. A nanocomposite with core–shell structure for site–specific oxygen sensing: Synthesis, characterization, photophysical feature and sensing performance [J]. Sensors Actuators B, 2015, 221: 312–319.
[11] 孔德金, 童伟益, 郑均林, 等. 核壳型沸石分子筛的合成–表征与应用[J]. 化学通报, 2008, 71 (4): 249–255.
KONG Dejin, TONG Weiyi, ZHENG Junlin. Chemistry(in Chinese), 2008, 71 (4): 249–255.
[12] 薛招腾, 唐雪婷, 王文兴, 等. 核壳结构的沸石分子筛复合材料研究进展[J]. 石油学报(石油加工), 2015, 31 (2): 228–243.
XUE Zhaoteng, TANG Xueting, WANG Wenxing, et al. Acta Petrol Sini (Petrol Process)(in Chinese), 2015, 31 (2): 228–243.
[13] 舒日洋, 龙金星, 张琦, 等. 核壳结构材料的制备及其应用[J]. 新能源进展, 2014, 2 (6): 423–429.
SHU Riyang, LONG Jinxing, ZHANG Qi, et al. Adv New Renew Energy (in Chinese), 2014, 2 (6): 423–429.
[14] CHU W, XU J, HONG J, et al. Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: Reducibility and performance (Review) [J]. Catal Today, 2015, 256: 41–48.
[15] XU J, CHU W, LUO S. Synthesis and characterization of mesoporous V–MCM–41 molecular sieves with good hydrothermal and thermal stability [J]. J Mol Catals A, 2006, 256 (1–2): 48–56.
[16] 许俊强, 储伟. DMDA对介孔V–MCM–41分子筛扩孔效应的影响[J]. 石油学报(石油化工), 2011, 27 (2): 269–274.
XU Junqiang,CHU Wei. Acta Petrol Sini(Petrol Process)(in Chinese), 2011, 27 (2): 269–274.
[17] 许俊强, 储伟. 硅源对合成介孔MCM–41分子筛结构–织构及其形貌的影响[J]. 硅酸盐学报, 2011, 39 (2): 278–284.
XU Junqiang,CHU Wei. J Chin Ceram Soc, 2011, 39 (2): 278–284
[18] 许俊强, 储伟, 陈慕华, 等. 介孔分子筛V–MCM–41的水热法制备与合成机理[J]. 催化学报, 2006, 27 (8): 671–677.
XU Junqiang, CHU Wei, CHEN Muhua. Chin J Catal(in Chinese), 2006, 27 (8): 671–677.
[19] 许俊强, 张丹, 郭芳, 等. 新型高效高稳定NOx催化还原用分子筛催化剂研究进展[J]. 硅酸盐学报, 2015, 43 (2): 241–250.
XU Juqiang, ZHANG Dan, GUO Fang. J Chin Ceram Soc, 2015, 43 (2): 241–250
[20] 许俊强, 张强, 郭芳, 等. 微结构单元提高介孔MCM–41分子筛水热稳定性的研究进展[J]. 硅酸盐学报, 2014, 42 (8): 1070–1077.
XU Juqiang, ZHANG Qiang, GUO Fang. J Chin Ceram Soc, 2014, 42 (8): 1070–1077.
[21] QIAN X F, LI B, HU Y Y, et al. Exploring me–so–/microporous composite molecular sieves with core–shell structures[J]. Chemistry, 2012, 18 (3): 931–939.
[22] 张志华, 阎子峰, 孙发民, 等. 一种微孔-介孔复合ZSM-5/MCM-41分子筛的合成方法[P]. CN 102464329 B. 2014–06–18.
[23] ZHANG Zhihua, YAN Zifeng, SUN Famin, et al. Syntheric method of mesoporous-microporous composite ZSM-5@MCM41 molecular sieve[P]. CN102464329B, 2014–06–18.
[24] JI Y, ZHANG B, ZHANG K, et al. Core/shell–structured ZSM–5@mesoporous silica composites for shape selective alkylation of toluene with methanol[J]. Acta Chim Sin, 2013, 71 (3): 371.
[25] LV Y, QIAN X, TU B, et al. Generalized synthesis of core–shell structured nano–zeolite@ordered meso–porous silica composites[J]. Catal Today, 2013, 204: 2–7.
[26] LIU X, YANG T, BAI P, et al. Y/MCM–41 composites assembled from nanocrystals[J]. Micropor Mesopor Mater, 2013, 181: 116–122.
[27] LIU L, SINGH R, LI G, et al. Synthesis of hydrophobic zeolite X@SiO2 core–shell composites[J]. Mater Chem Phys, 2012, 133 (2–3): 1144–1151.
[28] YU H, LV Y, MA K, et al. Synthesis of core–shell structured zeolite A@mesoporous silica composites for butyraldehyde adsorption[J]. J Colloid Interface Sci, 2014, 428: 251–256.
[29] LI S G, SONG G Q, MENG Y, et al. Synthesis and Characterization of the Novel NaA@mesosilica molecular sieves with core–shell structure[J]. Asian J Chem, 2013, 25 (13): 7216.
[30] DIAO Z H, WANG L, ZHANG X W, et al. Catalytic cracking of supercritical n–dodecane over meso–H–ZSM–5@Al–MCM–41 zeolites[J]. Chem Eng Sci, 2015, 135: 452–460.
[31] HAN Y, PITUKMANOROM P, ZHAO L, et al. Generalized synthesis of mesoporous shells on zeolite crystals [J]. Small, 2011, 7 (3): 326–332.
[32] JIA L X, SUN X Y, YE X Q, et al. Core–shell composites of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield[J]. Micropor Mesopor Mater, 2013, 176: 16–24.
[33] LI Y S, SHI J L, CHEN H R, et al. One–step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure[J]. Micropor Mesopor Mater, 2003, 60 (1–3): 51–56.
[34] QIAN X F, DU J M, LI B, et al. Controllable fabrication of uniform core–shell structured zeolite@SBA–15 composites[J]. Chem Sci, 2011, 2 (10): 2006.
[35] XU L, REN Y J, WU H H, et al. Core/shell–structured TS–1@mesoporous silica supported Au nanoparticles for selective epoxidation of propylene with H2 and O2[J]. J Mater Chem, 2011, 21 (29): 10852–10858.
[36] WEI S, WANG Q, ZHU J, et al. Multifunctional composite core–shell nanoparticles[J]. Nanoscale, 2011, 3 (11): 4474–4502.
[37] NIU D C, MA Z, LI Y S, et al. Synthesis of core–shell structured dual–mesoporous silica spheres with tunable pore size and controllable shell thickness[J]. J Am Chem Soc, 2010, 132 (43): 15144–15147.
[38] LÓPEZ–NORIEGA A, RUIZ–HERNÁNDEZ E, STEVENS S M, et al. Mesoporous microspheres with doubly ordered core–shell structure [J]. Chem Mater, 2008, 21 (1): 18–20.
[39] DIAO Z, WANG L, ZHANG X, et al. Catalytic cracking of supercritical n–dodecane over meso–HZSM–5@ Al–MCM–41 zeolites[J]. Chem Eng Sci, 2015, 135: 452–460.
[40] XIAN X, LIU G, ZHANG X, et al. Catalytic cracking of n–dodecane over HZSM–5 zeolite under supercritical conditions: Experiments and kinetics[J]. Chem Eng Sci, 2010, 65(20): 5588–5604.
[41] LI Y, ZHANG W, ZHANG L, et al. Direct synthesis of Al–SBA–15 mesoporous materials via hydrolysis–controlled approach[J]. J Phys Chem B, 2004, 108(28): 9739–9744.
[42] `WANG D, XU L, WU P. Hierarchical, core–shell meso–ZSM–5 mesoporous aluminosilicate supported Pt nanoparticles for bifunctional hydrocracking[J]. J Mater Chem A, 2014, 2 (37): 15535.
[43] LI J J, YANG C J, WU Y Z, et al. A strategy for optical site–specific oxygen sensing: Construction and characterization of a Ru(II) modified magnetic luminescent hybrid composite[J]. Inorg Chim Acta, 2016, 441: 1–8.
[44] YANG J P, LU F, CHEN J, et al. Sensing and magnetic removal of Hg(II) using core–shell structured nanocomposite grafted with fluorescence “Off–On” probe[J]. Micropor Mesopor Mater, 2015, 202: 175–182.
[45] ZHAO Y, CHEN X, Wan D. A magnetic mesoporous nano–composite modified with a ruthenium complex for site–specific molecular oxygen sensing: Construction and characterization[J]. Opt Mater, 2015, 46: 393–400.
[46] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 541.
|