[1] Lee H S, Ryu H S, Park W J, et al. Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors[J]. Mater, 2015, 8(1): 251–269.
[2] 徐永模. 迁移性阻锈剂——钢筋混凝土阻锈剂的新发展[J]. 硅酸盐学报, 2002, 30(1): 91–101.
XU Yongmo. J Chin Ceram Soc, 2002, 30(1): 91–101.
[3] 刘志勇, 缪昌文, 周伟玲, 等. 迁移性阻锈剂及其在混凝土中耐久性保持和提升中的作用[J]. 硅酸盐学报, 2008, 36(10): 1494–1500.
LIU Zhiyong, MIAO Changwen, ZHOU Weiling, et al. J Chin Ceram Soc, 2008, 36(10): 1494–1500.
[4] Levasy T A, Manically C, Richardson M G. The effect of a new generation surface-applied organic inhibitor on concrete properties[J]. Cem Concr Compos, 2007, 29(5): 357–364.
[5] Jamil H E, Montemor M F, Bouulif R, et al. An electrochemieal and analytical approach to the inhibition mechanism of an amino-alcohol-based corrosion inhibitor for reinforced concrete[J]. Electrochim Acta, 2003, 48(23): 3509–3518.
[6] 宋宁, 王子潇, 刘志勇, 等. 表面涂覆迁移性阻锈剂对含氯盐混凝土中钢筋腐蚀的影响及工程应用, 第九届全国混凝土结构耐久性学术研讨会论文集, 宁波, 浙江, 2016, 9.
Song Ning, Wang Zixiao, Liu Zhiyong,et.al, Effect of surface painting MCI on steel corrosion condition in chloride contaminated concrete and engineering application, Proceedings of the Ninth National Symposium on concrete durability, Ningbo, Zhejiang, 2016, 9.
[7] Rakanta E, Zafeiropoulou T, Batis G. Corrosion protection of steel with DMEA-based organic inhibitor[J]. Constr Build Mater, 2013, 44, 507–513.
[8] 缪昌文, 周伟玲, 陈翠翠. 模拟混凝土孔溶液中有机阻锈剂对钢筋的保护作用[J]. 东南大学学报: 自然科学版, 2010, 40(S2): 187–191.
MIAO Changwen, ZHOU Weiling, CHEN Cuicui. J Southeast Univ: Nat Sci Ed(in Chinese), 2010, 40(S2): 187–191.
[9] 陈翠翠, 周伟玲, 刘加平. 新型有机阻锈剂对钢筋的阻锈作用[J]. 建筑材料学报, 2011, 14(1): 136–139.
CHEN Cuicui, ZHOU Weiling, LIU Jiaping. J Build Mater (in Chinese), 2011, 14(1): 136–139.
[10] 吴欢, 高立新, 张大全. 模拟混凝土孔隙液中N,N–二甲基乙醇胺的阻锈作用[J]. 腐蚀与防护, 2011, 32(9): 681–683.
WU Huan, GAO Lixin, ZHANG Daquan. Corr Prot (in Chinese), 2011, 32(9): 681–683.
[11] YU L, LIU Z Y, YANG W B, WANG Z X. Adsorption and characterization of an organic corrosion inhibitor for inhibiting carbon steel corrosion in chloride solution[J]. Curr Anal Chem, 2015, 11(4): 1–6.
[12] Liu Z Y, Yu L, Li Q Z. Synergic mechanism of an organic corrosion inhibitor for preventing carbon steel corrosion in chloride solution [J]. J Wuhan Univ Technol Mater Sci, 2015, 30(2): 325–330.
[13] 刘志勇, 王子潇, 宋宁. 迁移性阻锈剂的优化及渗透阻锈性能[J]. 硅酸盐学报, 2016, 44(3): 481–486.
Liu Z Y, WANG Z X, SONG N. J Chin Ceram Soc, 2016, 44(3): 481–486.
[14] 于蕾, 刘志勇, 左晓宝, 迁移性阻锈剂在混凝土中的传输模型[J]. 硅酸盐学报, 2014, 42(11): 1370–1376.
YU Lei, LIU Zhiyong, ZUO Xiaobao. J Chin Ceram Soc, 2014, 42(11): 1370–1376.
[15] Liu Z Y, Yu L, WANG Z X, YANG W B. Modeling and experimental validation of MCI transport involving pore-blocking effect in cement-based materials[J]. J Mater Civil Eng, 2016, 28(5): 04015187–1–04015187–7.
[16] 杨维斌, 于蕾, 刘志勇, 等. 迁移性阻锈剂影响钢筋锈蚀速率的量化模型及应用[J]. 硅酸盐学报, 2015, 43(6): 839–844.
YANG Weibin, YU Lei, LIU Zhiyong. J Chin Ceram Soc, 2015, 43(6): 839–844.
[17] Liu Z Y, WANG Z X, SONG N. A quantitative study on MCI rehabilitating steel bars in chloride contaminated concrete based on inhibition and transport behaviors [J]. J Mater Civil Eng, 2016, 28(12) DOI:10.1061/(ASCE)MT.1943–5533.0001695.
[18] 徐艳. 锈蚀钢筋横截面积纵向不均匀性研究[D]. 同济大学, 2012.
XU Yan. Tongji Uinversity (in Chinese), 2012.
[19] 陈辉, 张伟平, 顾祥林. 高应变率下锈蚀钢筋力学性能试验研究[J]. 建筑材料学报, 2013, 16(5): 869–875.
ZHANG Hui, ZHANG Weiping, GU Xianglin. J Build Mater (in Chinese), 2013, 16(5): 869–875.
[20] 张伟平, 李崇凯, 顾祥林, 等. 锈蚀钢筋的随机本构关系[J]. 建筑材料学报, 2014, 17(5): 920–926.
ZHANG Weiping, LI Chongkai, GU Xianglin. J Build Mater (in Chinese), 2014, 17(5): 920–926.
[21] 谢雄耀, 姜毅, 卢晓智, 等. 超高压服役杆塔病害及三维激光扫描检测技术[J]. 地下空间与工程学报, 2014, 10(3): 668–674.
XIE Xiongyao, JIANG Yi, LU Xiaozhi, et al. Chin J Underground Space Eng (in Chinese), 2014, 10(3): 668–674.
[22] POURSAEE A. Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern–Geary constant of reinforcing steel in concrete[J]. Cem Concr Res, 2010, 40(9): 1451–1458.
[23] Bromfield J P. Corrosion of steel in concrete understanding, investigationg and repair[J]. 2 Ed, London: Taylor & Francis Group, 2007: 70–82.
[24] 许磊, 黎智辉, 王俊娟, 等. 高精度三维人脸图像数据库[J]. 刑事技术, 2015(2): 94–97.
XU Lei, LI Zhihui, Wang Junjuan, et al. Foren Sci Technol (in Chinese), 2015(2): 94–97.
[25] 穆志韬, 熊玉平. 高强度铝合金的腐蚀损伤分布规律研究[J]. 机械工程材料, 2002, 26(4): 14–16.
MU Zhitao, XIONG Yuping. Mater mech eng (in Chinese), 2002, 26(4): 14–16.
[26] 朱晓娥, 常亮, 谢慧才. 氯离子环境下钢筋锈蚀概率模型探讨[J]. 汕头大学学报(自然科学版), 2007, 22(4): 76–80.
ZHU Xiaoe, CHANG Liang, XIE Huicai. Edit Depart of Shantou Univ J (in Chinese), 2007, 22(4): 76–80.
[27] 陈跃良, 杨晓华, 秦海勤. 飞机结构腐蚀损伤分布规律研究[J]. 材料科学与工程学报, 2002, 20(3): 378–380.
CHEN Yueliang, YANG Xiaohua, QIN Haiqin. J Mater Sci Eng(in Chinese), 2002, 20(3): 378–380.
[28] 任和, 冯元生, 王琛. 运七机翼腐蚀失效模型及其可靠性分析[J]. 腐蚀科学与防护技术, 1998(4): 212–216.
REN He, FENG Yuansheng, WANG Chen. Corros Sci ProtTechnol(in Chinese), 1998(4): 212–216.
[29] 陈定海, 郭兵, 朱做涛. 飞机结构腐蚀损伤尺寸的关联性分析与探讨[J]. 海军航空工程学院学报, 2008, 23(2): 221–223.
CHEN Dinghai, GUO Bing, ZHU Zuotao. J Naval Aeronautical Eng Inst(in Chinese), 2008, 23(2): 221–223.
|