首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
光助钙钛矿-凹凸棒石纳米复合材料选择性催化氨还原脱硝
作者:严向玉1 李霞章1 鲁光辉2 于龙庆2 罗士平1 姚超1 
单位:1. 常州大学 石油化工学院 江苏 常州 213164 2. 盱眙中材凹凸棒石粘土有限公司 江苏 盱眙 211700 
关键词:钙钛矿 凹凸棒石 光耦合 脱硝 异质结 
分类号:TB332
出版年,卷(期):页码:2017,45(5):7-7
DOI:10.14062/j.issn.0454-5648.2017.05.00
摘要:

 采用溶胶-凝胶法制备了La1–xCexNiO3/凹凸棒石(ATP)复合材料。通过X射线衍射(XRD)、透射电镜(TEM)、傅里叶变换红外光谱仪(FT-IR)和紫外可见漫反射谱(UV-Vis)等方法对复合材料的结构、物化性质进行表征,并将其运用到光耦合脱硝中,探讨不同参数对氮氧化物去除率的影响。研究结果表明:载体凹凸棒石独特的孔道结构不仅可以增强对气体分子的吸附,还可以加强材料的光催化稳定性。当Ce3+的掺杂量为0.1时,La1–xCexNiO3/ATP以固溶体的形式均匀分布在ATP表面,当掺杂量超过0.1时,有CeO2相的析出,与La1–x CexNiO3在ATP表面形成异质结结构,当掺杂量为0.3时,复合材料的光催化活性最高,达到80%。

 

 The La1–xCexNiO3/attapulgite (ATP) nanocomposites were prepared via a sol-gel method. The structures and physiochemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible diffused reflectance spectroscopy (UV-Vis), respectively. La1–xCexNiO3/ATP nanocomposite was used as a catalyst for photo-assisted selective catalytic reduction (photo-SCR) of NOx under visible-light irradiation. The impact of Ce doping fraction on the NO conversion was investigated. The results indicate that La1–xCexNiO3 solid solution is supported on the surface of ATP when x is 0.1. When x is greater than 0.1, CeO2 phase co-precipitates and forms well-defined “solid-solution/ precipitation heterojunction” with La1–xCexNiO3 on the surface of ATP. The photo-SCR activity of the composite material is the highest when x=0.3 and the NO conversion can reach 80% even at room temperature.

 
基金项目:
国家自然科学基金(51674043);江苏省国际合作项目(BZ2015040);江苏省社会发展项目(BE2016654)
作者简介:
严向玉(1992—),女,硕士研究生
参考文献:

 [1] 贺泓, 刘福东, 余运波, 等. 环境友好的选择性催化还原氮氧化物催化剂[J]. 中国科学: 化学, 2012, 42: 446–468.

HE Hong, LIU Fudong, YU Yunbo, et al. Sci China Chem (in Chinese), 2012, 42: 446–468. 
[2] PEI Carinachun, LEUNG Wallacewoon-fong. Photocatalytic oxidation of nitrogen monoxide and o-xylene by TiO2/ZnO/Bi2O3 nanofibers: Optimization, kinetic modeling and mechanisms[J]. Appl Catals B: Environmental, 2015, 174–175: 515–525.
[3] MA Jinzhu, WANG Caixia, HE Hong, et al. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light[J]. Appl Catal B: Environmental, 2016, 184: 28–34.
[4] SCHNEIDER Jenny, Matsuoka Masaya, TAKEUCHI Masato, ZHANG Jin-long, HORIUCHI Yu, ANPO Masakazu, BAHNEMANN Detlef W, Understanding TiO2 Photocatalysis: Mechanisms and Materials[J]. Chem Rev, 2014, 114(19): 9919–9986.
[5] WU Qingping, ROEL Van De Krol. Selective Photoreduction of Nitric Oxide to Nitrogen by Nanostructured TiO2 Photocatalysts: Role of Oxygen Vacancies and Iron Dopant[J]. J Am Chem Soc, 2012, 134(22): 9369–9375.
[6] TERAMURA Kentaro, TANAKA Tsunehiro, YAMAZOE Seiji, et al. Kinetic study of photo-SCR with NH3 over TiO2[J]. Appl Catals B: Environmental, 2004, 53(1): 29–36. 
[7] TERAMURA Kentaro, TANAKA Tsunehiro, FUNABIKI Takuzo. Photoassisted Selective Catalytic Reduction of NO with Ammonia in the Presence of Oxygen over TiO2[J]. Langmuir, 2003, 19(4): 1209–1214.
 
[8] LASEK J, YU YH, WU JCS. Removal of NOx by photocatalytic processes[J]. J Photochem Photobiol C: Photochem Rev, 2013, 14: 29–52.
[9] Yamamoto A, Teramura K, Hosokawa S, et al. Visible-Light-Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dye-Modified Titania Photocatalysts[J]. Chem Cat Chem, 2015, 7:12–17.
[10] Yamamoto A, Mizuno Y, Teramura K, et al. Visible-light-assisted selective catalytic reduction of NO with NH3 on porphyrin derivative-modified TiO2 photocatalysts[J]. Catal Sci Technol, 2015, 5(1): 556–561.
[11] 董抒华, 田贵山, 冯柳. 钙钛矿La1−xSrxMnO3纳米晶光催化活性[J]. 中国有色金属学报, 2008, 18(7): 1353–1357.
DONG Shuhua, TIAN Guishan, FENG Liu. Chin J Nonferrous Met (in Chinese), 2008, 18(7): 1353–1357.
[12] LI Xiazhang, NI Chaoying, LU Xiaowang, et al. In situ fabrication of Ce1−xLaxO2−δ/palygorskite nanocomposites for efficient catalytic oxidation of CO: effect of La doping[J]. Catal Sci Technol, 2016, 6: 545–554. 
[13] 李霞章, 姚超, 陈志刚. 凹凸棒石/Ce1–xZrxO2 纳米复合材料的制备及其催化氧化性能[J]. 硅酸盐学报, 2011, 39(8): 1307–1311.
LI Xiazhang, YAO Chao, CHEN Zhigang. J Chin Ceram Soc (in Chinese), 2011, 39(8): 1307–1311.
[14] XU Qian, HAN Xiaopeng, DING Fei, et al. A highly efficient electrocatalyst of perovskite LaNiO3 for nonaqueous Li–O2 batteries with superior cycle stability[J]. J Alloys Compd, 2016, 664: 750–755.
[15] SHI Yun, TAN Shan, WANG Xiaoxiang, et al. Regeneration of sulfur-poisoned CeO2 catalyst for NH3-SCR of NOx [J]. Catal Commun, 2016, 86: 67–71.
[16] 李丹, 黄剑锋, 曹丽云, 等. 微波水热法制备Cr3+掺杂ZnO纳米晶及其光催化性能[J]. 硅酸盐学报, 2013, 41(12): 1692–1696.
LI Dan, HUANG Jianfeng, CAO Liyun, et al. J Chin Ceram Soc (in Chinese), 2013, 41(12): 1692–1696.
[17] 陈红, 王文波, 张俊平, 等. 冷冻-碾磨处理凹凸棒石黏土对复合高吸水性树脂性能的影响[J]. 硅酸盐学报, 2010, 38(11): 2148–2153.
CHEN Hong, WANG Wenbo, ZHANG Junping, et al. J Chin Ceram Soc (in Chinese), 2010, 38(11): 2148–2153.
[18] 于国峰, 顾月平, 金瑞奔. Mn /TiO2和Mn-Ce /TiO2低温脱硝催化剂的抗硫性研究[J]. 环境科学学报, 2013, 33(8): 2149–2157. 
YU Guofeng, GU Yueping, JIN Ruiben. J Environ Sci (in Chinese), 2013, 33(8): 2149–2157.
[19] LIN Haili, YE Huifang, CHEN Shifu, et al. One-pot hydrothermal synthesis of BiPO4/BiVO4 with enhanced visible-light photocatalytic activities for methylene blue degradation [J]. RSC Adv, 2014, 4(21): 10968–10974.
[20] 胡婕, 王丽娜, 马嘉华, 等. LaBO3(B=Ni, Mn, Fe)/石墨烯复合薄膜的制备及光催化性能[J]. 中国有色金属学报, 2014, 24(1): 152-159.
HU Jie, WANG Lina, MA Jiahua, et al. Chin J Nonferrous Met (in Chinese), 2014, 24(1): 152–159.
[21] HUANG K, LI Y H, LIN S, et al. One-step synthesis of reduced graphene oxide–CeO2 nanocubes composites with enhanced photocatalytic activity[J]. Mater Lett, 2014, 124: 223–226.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com