首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
纳米级有序介孔氧化硅空心球的制备及药物缓释效果
作者:李世纪1 马宁2 张月3 刘文婷1 张笑妍2 陈智刚1 付建平1 黄勇2 杨金龙2 
单位:1. 中北大学机电工程学院 太原 030051 2. 清华大学材料学院  新型陶瓷与精细工艺国家重点实验室 北京 100084 3. 大连交通大学材料科学与工程学院 辽宁 大连 116021 
关键词:介孔 氧化硅 纳米空心球 药物缓释 
分类号:TB32
出版年,卷(期):页码:2017,45(3):327-332
DOI:
摘要:

提出一种条件温和、工艺简单的“常温水溶法”制备纳米级有序介孔氧化硅空心球,研究了该空心球作为药物伊利替康(CPT–11)的载体的载药和缓释性能。结果表明:“常温水溶法”能够制备出球形形貌规整、粒径均匀(460 nm)、高比表面积(1 237 m2/g)且具有有序介孔孔道结构(2.7 nm)的介孔氧化硅空心球,该空心球在药物传输领域具有良好的性能,CPT–11的载药率为14.50%,在pH为7.2、5.5和4.2的环境中108 h药物的释药率分别达28.49%、39.22%和77.72%,该方法适合产业化应用,制备出的纳米级介孔氧化硅空心球有望作为CPT–11药物载体在抗肿瘤领域中得到应用。
 

The mesoporous silica solid spheres with different silica condensation degrees inside and outside were prepared via the hydrolysis and condensation of tetraethoxysilane (TEOS). The inner part of solid spheres is more easily dissolved rather than the outer part, and the inner part of the solid spheres is dissolved in deionized water at room temperature to obtain the hollow mesoporous silica nanospheres (HMSS) with ordered mesochannels. A facile method for preparing HMSS by water dissoving at room temperature was developed. The performance of HMSS in drug loading and releasing was investigated. The results show that this method can synthesize the HMSS with a well-defined spherical morphology, uniform particle size (i.e., 460 nm), high specific surface area (i.e.,  1 237 m2/g) and ordered mesochannels (i.e., 2.7 nm), and the superior performance in drug releasing. The loading content of CPT–11 is 14.50%, and the drug releasing amount in 108 h at pH 7.2, 5.5 and 4.2 can reach 28.49%, 39.22% and 77.72%, respectively.

基金项目:
国家自然科学基金(51572140)和中国博士后科学基金(2015M581089)资助。
作者简介:
李世纪(1990—),男,硕士研究生。
参考文献:

[1] LI W, ZHAO D Y. An overview of the synthesis of ordered mesoporous materials[J]. Chem Commun, 2013, 49(10): 943–946.
[2] YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Am Chem Soc, 2011, 11(7): 2949–2954.
[3] CHEN Z, CUI Z M, LI P, et al. Diffusion induced reactant shape selectivity inside mesoporous pores of pd@meso–SiO2 nanoreactor in suzuki coupling reactions[J]. J Phys Chem, 2012, 116(28): 14986–14991.
[4] JIAO Y F, SUN Y F,CHANG B S, et al. Redox- and temperature-controlled drug release from hollow mesoporous silica nanoparticles[J]. Chem A Eur J, 2013, 19(45): 15410–15420.
[5] SONG J C, XUE F F, LU Z Y, et al. Controllable synthesis of hollow mesoporous silica particles by a facile one-pot sol–gel method[J]. Chem Commun, 2015, 52(51): 10517–10520.
[6] 马雪慧, 王乐善, 赵彦保, 等. 中空纳米二氧化硅微球的制备及表征[J]. 无机化学学报, 2009, 25(6): 1091–1096.
MA Xuehui, WANG Leshan, ZHAO Yanbao, et al. J Inorg Chem(in Chinese), 2009, 25(6): 1091–1096.
[7] LI Y S, SHI J L. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications[J]. Adv Mater, 2014, 26(20): 3176–3205.
[8] SUN B, GUO C Y, YAO Y, et al. Controllable synthesis of silica hollow spheres by vesicle templating of silicone surfactants[J]. J Mater Sci, 2013, 48(5): 1890–1898.
[9] LI Z, WANG S B. Investigation of hollow silica spheres with controllable size and shell thickness[J]. J Inorg Mater, 2011, 26(8): 885–891.
[10] FAN W G, GAO L. Synthesis of silica hollow spheres assisted by ultrasound[J]. J Colloid Interf Sci, 2005, 297(1): 157–160.
[11] FANG X L, CHEN C, LIU Z H, et al. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres[J]. Nanoscale, 2011, 3: 1632–1639.
[12] 毛晶. SiO2空心微球的制备与结构表征[D]. 天津: 天津大学, 2007.
MAO Jing. Fabrication and structure characteristics of silica hollow microspher(in Chinese, dissertation). Tianjin: Tianjin University, 2007.
[13] ZHU H, MA Y G, FAN Y G, et al. Fourier transform infrared spectroscopy and oxygen luminescence probing combined study of modified sol–gel derived film[J]. Thin Solid Films, 2001, 397(1): 95–101.
[14] CHEN Y, CHEN H R, GUO L M, et al. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy[J]. Am Chem Soc, 2010, 4(1): 529–539.
[15] TENG Z G, SU X D, LEE B H, et al. Yolk–shell structured mesoporous nanoparticles with thioether-bridged organosilica frameworks[J]. Chem Mater, 2014, 26(20): 5980–5987.
[16] TAN B, RANkIN SE. Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells[J]. Langmuir, 2005, 21(18): 8180–8187.
[17] 袁丽. 刺激响应性纳米药物控释系统的制备及应用研究[D]. 上海: 复旦大学, 2013.
YUAN Li. Preparation of stimuli-responsive nanomaterials and their application in controlled drug delivery(in Chinese, dissertation). Shanghai: Fudan University, 2013.
[18] CHEN Y, CHEN H R, SHI J L, et al. Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/hydrophobic anticancer drug delivery[J]. J Mater Chem, 2011, 21(14): 5290–5298.
[19] GANTA S, DEVALAPALLY H, SHAHIWALA A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery [J]. J Contrlled Release, 2008, 126(3): 187–204.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com