[1]O?BOLT M, KITANOVSKI A, TUŠEK J, et al. Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives[J]. Inter J Refrigerat, 2014, 40: 174–188.
[2]O?BOLT M, KITANOVSKI A, TUŠEK J, et al. Electrocaloric vs. magnetocaloric energy conversion[J]. Inter J Refrigerat, 2014, 37: 16–27.
[3]VALANT M. Electrocaloric materials for future solid-state refrigeration technologies[J]. Progr Mater Sci, 2012, 57(6): 980–1009.
[4]PAUL J. Quo vadis, heat pump[C]// Presentation on the 23rd IIR International Congress of Refrigeration, Prague, Czech Republic, 2011.
[5]鲁圣国, 唐新桂, 伍尚华, 等. 铁电材料中的大电卡效应[J]. 无机材料学报, 2014(1): 6–12.
LU Shengguo, TANG Xingui, WU Shanghua, et al. J Inorg Mater (in Chinese), 2014(1): 6–12.
[6]钟维烈. 铁电体物理学[M]. 北京: 科学出版社, 1996.
[7]LINES M E, GLASS A M. Principles and applications of ferroelectrics and related materials[M]. New York: Oxford University Press, 1977.
[8]王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009.
[9]KOBECO P, KURTCHATOV I V. Dielectric properties of Rochelle salt crystal[J]. Z Phys, 1930, 66: 192–205.
[10]WISEMAN G G, HUEBLER D A. Electrocaloric effect in ferroelectric Rochelle salt [J]. Phys Rev, 1963, 131(5): 2023–2027.
[11]MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270–1271.
[12]LU S G, RO?I? B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect[J]. Appl Phys Lett, 2010, 97(16): 162904.
[13]LU S G, RO?I? B, ZHANG Q M, et al. Enhanced electrocaloric effect in ferroelectric poly (vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric–paraelectric transition[J]. Appl Phys Lett, 2011, 98(12): 122906.
[14]LIU P F, WANG J L, MENG X J, et al. Huge electrocaloric effect in Langmuir-Blodgett ferroelectric polymer thin films[J]. New J Phys, 2010, 12(2): 023035.
[15]LEI C, BOKOV A A, YE Z G. Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system[J]. J Appl Phys, 2007, 101(8): 84105.
[16]HORCHIDAN N, IANCULESCU A C, VASILESCU C A, et al. Multiscale study of ferroelectric-relaxor crossover in BaSnxTi1−xO3 ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3661–3674.
[17]MUELLER V, BEIGE H, ABICHT H P. Non-Debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state[J]. Appl Phys Lett, 2004, 84(8): 1341–1343.
[18]HORCHIDAN N, IANCULESCU A C, CURECHERIU L P, et al. Preparation and characterization of barium titanate stannate solid solutions[J]. J Alloys Compd, 2011, 509(14): 4731–4737.
[19]MUELLER V, JÄGER L, BEIGE H, et al. Thermal expansion in the burns-phase of barium titanate stannate[J]. Solid State Commun, 2004, 129(12): 757–760.
[20]LU S G, XU Z K, CHEN H. Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics[J]. Appl Phys Lett, 2004, 85(22): 5319.
[21]TURA V, MITOSERIU L. Ageing of low field dielectric constant and losses in (Hf, Zr)-doped BaTiO3 ceramics[J]. Eur Lett, 2000, 50(6): 810–815.
[22]DAS S K, ROUL B K. Double hysteresis loop in BaTi1–xHfxO3 ferroelectric ceramics[J]. J Mater Sci-Mater Electron, 2015, 26(8SI): 5833–5838.
[23]KALYANI A K, BRAJESH K, SENYSHYN A, et al. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3[J]. Appl Phys Lett, 2014, 104(25): 252906.
[24]CURECHERIU L P, DELUCA M, MOCANU Z V, et al. Investigation
of the ferroelectric–relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study[J]. Phase Transit, 2013, 86(7SI): 703–714.
[25]CERNEA M, MATEI I, IUGA A, et al. Preparation and characterization of Ce-doped BaTiO3 thin films by r.f. sputtering[J]. J Mater Sci, 2001, 36(20): 5027–5030.
[26]TANG X G, CHEW K H, CHAN H L W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics[J]. Acta Mater, 2004, 52(17): 5177–5183.
[27]MAITI T, GUO R, BHALLA A S. Evaluation of experimental resume of BaZrxTi1–xO3 with perspective to ferroelectric relaxor family: An overview[J]. Ferroelectrics, 2011, 425(1): 4–26.
[28]DELUCA M, VASILESCU C A, IANCULESCU A C, et al. Investigation of the composition-dependent properties of BaTi1−xZrxO3 ceramics prepared by the modified Pechini method[J]. J Eur Ceram Soc, 2012, 32(13): 3551–3566.
[29]CIOMAGA C, VIVIANI M, BUSCAGLIA M T, et al. Preparation and characterisation of the Ba (Zr, Ti)O3 ceramics with relaxor properties[J]. J Eur Ceram Soc, 2007, 27(13): 4061–4064.
[30]DOMINGOS H, QUATTRO D, SCATURRO J. Breakdown in ceramic capacitors under pulsed high voltage stress[J]. IEEE Transact Compon Hybrids Manuf Technol, 1978, 1(4): 423–428.
[31]CROSS L E. Relaxor ferroelectrics: an overview[J]. Ferroelectrics, 1994, 151(1): 305–320.
[32]BAI Y, ZHENG G, DING K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J Appl Phys, 2011, 110(9): 94103.
[33]LU S G, CAI Z H, OUYANG Y X, et al. Electrical field dependence of electrocaloric effect in relaxor ferroelectrics[J]. Ceram Inter, 2015, 41: S15–S18.
[34]LU S G, RO?I? B, ZHANG Q M, et al. Electrocaloric effect in ferroelectric polymers[J]. Appl Phys A, 2012, 107(3): 559–566.
[35]LU S G, XIONG H, WEI A, et al. Electrocaloric and electrostrictive effect of polar P (VDF–TrFE–CFE) terpolymers[J]. J Adv Dielectr, 2013, 3(2): 1350015.
|