[1]TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.
[2]WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem Rev, 2004, 104(10): 4271–4302.
[3]ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[4]YI T F, MEI J, ZHU Y R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high–voltage cathode materials for high power lithium–ion batteries[J]. J Power Sources, 2016, 316: 85–105.
[5]SHA Y, XU X, LI L, et al. Hierarchical carbon–coated acanthosphere–like Li4Ti5O12 microspheres for high–power lithium– ion batteries[J]. J Power Sources, 2016, 314: 18–27.
[6]MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel–rich and lithium–rich layered oxide cathodes: progress and perspectives[J]. Adv Energy Mater, 2016, 6(1):1–23.
[7]FENG X, YANG Z, TANG D, et al. Performance improvement of Li–rich layer–structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4[J]. Phys Chem Chem Phys, 2015, 17(2): 1257–1264.
[8]YE D, WANG B, CHEN Y, et al. Understanding the stepwise capacity increase of high energy low–Co Li–rich cathode materials for lithium ion batteries[J]. J Mater Chem A, 2014, 2(44): 18767–18774.
[9]CHO J, KIM Y J, PARK B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chem Mater, 2000, 12(12): 3788–3791.
[10]WANG J, SUN X. Olivine LiFePO4: the remaining challenges for future energy storage[J]. Energ Environ Sci, 2015, 8(4): 1110–1138.
[11]HU D H, ZHAO S X, DENG Y F, et al. Synthesis and electrochemical performance of rod–like spinel LiMn2O4 coated by Li–Al–Si–O solid electrolyte[J]. J Mater Chem A, 2013, 1(46): 14729–14735.
[12]DENG Y F, ZHAO S X, XU Y H, et al. Effect of temperature of Li2O–Al2O3–TiO2–P2O5 solid–state electrolyte coating process on the performance of LiNi0.5Mn1.5O4 cathode materials[J]. J Power Sources, 2015, 296: 261–267.
[13]LI J, CAO C, XU X, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano–micro hierarchical microspheres with enhanced performances as cathodes for lithium–ion batteries[J]. J Mater Chem A, 2013, 1(38): 11848–11852.
[14]LIM J M, KIM D, LIM Y G, et al. The origins and mechanism of phase transformation in bulk Li2MnO3: first–principles calculations and experimental studies[J]. J Mater Chem A, 2015, 3(13): 7066–7076.
[15]RUTHER R E, DIXIT H, PEZESHKI A M, et.al. Correlating local structure with electrochemical activity in Li2MnO3[J]. J Phys Chem C, 2015, 119(32): 18022–18029.
[16]GU M, BELHAROUAK I, ZHENG J, et al. Formation of the spinel phase in the layered composite cathode used in Li–ion batteries[J]. ACS Nano, 2012, 7(1): 760–767.
[17]LI Q, LI G S, FU C C , et al. Balancing stability and specific energy in Li–rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide[J]. J Mater Chem A, 2015(3): 10592–10602.
[18]YU H, ZHOU H. High–energy cathode materials (Li2MnO3–LiMO2) for lithium–ion batteries[J]. J Phys Chem Lett, 2013, 4(8): 1268–1280.
[19]WEILL F, TRAN N, CROGUENNEC L, et al. Cation ordering in the layered Li1+x(Ni0.425Mn0.425Co0.15)1–xO2 materials (x=0 and 0.12)[J]. J Power Sources, 2007, 172(2): 893–900.
[20]BRÉGER J, JIANG M, DUPRÉ N, et al. High–resolution X–Ray diffraction, Diffax, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution[J]. J Solid State Chem, 2005, 178(9): 2575–2585.
[21]JANSEN M, HOPPE R. Zur Kenntnis Der Nacl–Strukturfamilie: Neue Untersuchungen an Li2MnO3[J]. Z Anorg Allge Chem, 1973, 397(3): 279–289.
[22]RIOU A, LECERF A, GERAULT Y, et al. Etude Structurale De Li2MnO3[J]. Mater Res Bull, 1992, 27(3): 269–275.
[23]SHAO–HORN Y, EIN–ELI Y, ROBERTSON A D, et al. Morphology modification and delithiation mechanisms of LiMn2O4 and Li2MnO3 by acid digestion[J]. J Electrochem Soc, 1998, 145(1): 16–23.
[24]WANG Z, REN Y, MA T, et al. Probing cation intermixing in Li2SnO3[J]. Rsc Adv, 2016, 6(37): 31559–31564.
[25]SARKAR S, MA·HALE P, MITRA S., Lithium rich composition of Li2RuO3 and Li2Ru1–XIrxO3 layered materials as Li–ion battery cathode[J]. J Electrochem Soc, 2014, 161(6): A934–A942.
[26]STROBEL P, LAMBERT–ANDRON B. Crystallographic and magnetic structure of Li2MnO3[J]. J Solid State Chem, 1988, 75(1): 90–98.
[27]YU S H, YOON T, MUN J, et al. Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033 O2 cathode material for lithium ion batteries[J]. J Mater Chem A, 2013, 1(8): 2833–2839.
[28]THACKERAY M M, KANG S H, JOHNSON C S, et el. Li2MnO3–stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium–ion batteries[J]. J Mater Chem, 2007, 17(30): 3112–3125.
[29]LIU X, SU Q, ZHANG C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sustain Chem Eng, 2015, 4(1): 255–263.
[30]MENG Y S, CEDER G, GREY C P, et al. Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation[J]. Electrochem Solid State Lett, 2004, 7(6): A155–A158.
[31]MENG Y, CEDER G, GREY C, et al. Cation ordering in layered O3 Li[NixLi1/3–2x/3Mn2/3–x/3]O2 (0≤x≤1/2) compounds[J]. Chem Mater, 2005, 17, 2386–2394.
[32]JOHNSON C S, LI N, LEFIEF C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1–x) LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7)[J]. Chem Mater, 2008, 20(19): 6095–6106.
[33]BOULINEAU A, CROGUENNEC L, DELMAS C, et al. Structure of Li2MnO3 with different degrees of defects[J]. Solid State Ionics, 2010, 180(40): 1652–1659.
[34]DENIS Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3[J]. J Electrochem Soc, 2009, 156(6): A417–A424.
[35]SAINT J A, DOEFF M M, REED J. Synthesis and electrochemistry of Li3MnO4: Mn in the +5 oxidation state[J]. J Power Sources, 2007, 172(1): 189–197.
[36]ROSSOUW M H, THACKERAY M M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Mater Res Bulletin, 1991, 26(6): 463–473.
[37]PARK S H, SATO Y, KIM J K K, et al. Powder property and electrochemical characterization of Li2MnO3 Material[J]. Mater Chem Phys, 2007, 102(2): 225–230.
[38]CROY J R, PARK J S, DOGAN F, et al. First–cycle evolution of local structure in electrochemically activated Li2MnO3[J]. Chem Mater, 2014, 26(24): 7091–7098.
[39]JIANG M, KEY B, MENG Y S, et al. Electrochemical and structural study of the layered “Li–excess” lithium–ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2[J]. Chem Mater, 2009, 21(13): 2733–2745.
[40]RANA J, STAN M, KLOEPSCH R, et al. Structural changes in Li2MnO3 cathode material for Li–ion batteries[J]. Adv Energy Mater, 2014, 4(5): 1–12
[41]JACOB C, JIAN J, SU Q, et al. Electrochemical and structural effects of in situ Li2O extraction from Li2MnO3 for Li–ion batteries[J]. ACS Appl Mater Interface, 2015, 7(4): 2433–2438.
[42]ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006, 128(26): 8694–8698.
[43]PAIK Y, GREY C P, JOHNSON C S, et al. Lithium and deuterium NMR studies of acid–leached layered lithium manganese oxides[J]. Chem Mater, 2002, 14(12): 5109–5115.
[44]ROBERTSON A D, BRUCE P G. Mechanism of electrochemical activity in Li2MnO3[J]. Chem Mater, 2003, 15(10): 1984–1992.
[45]YE D, SUN C, CHEN Y, et al. Ni–induced stepwise capacity increase in Ni–poor Li–rich cathode materials for high performance lithium ion batteries[J]. Nano Res, 2015, 8(3): 808–820.
[46]WANG R, HE X, HE L, et al. Atomic structure of Li2MnO3 after partial delithiation and re–lithiation[J]. Adv Energy Mater, 2013, 3(10): 1358–1367.
[47]KOYAMA Y, TANAKA I, NAGAO M, et al. First–principles study on lithium removal from Li2MnO3[J]. J Power Sources, 2009, 189(1): 798–801.
[48]LEE E, PERSSON K A. Structural and chemical evolution of the layered Li–excess LixMnO3 as a function of Li content from first–principles calculations[J]. Adv Energy Mater, 4(15):27-32.
[49]KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M'O3·(1–x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M'= Ti, Mn, Zr; 0≤x≤0.3)[J]. Chem Mater, 2004, 16(10): 1996–2006.
[50]DUPRÉ N, CUISINIER M, LEGALL E, et al. Contribution of the oxygen extracted from overlithiated layered oxides at high potential to the formation of the interphase[J]. J Power Sources, 2015, 299: 231–240.
[51]WEI Z, XIA Y, QIU B, et al. Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium–rich manganese–based material[J]. J Power Sources, 2015, 281: 7–10.
[52]WU Q, MARONI V A, GOSZTOLA D J, et al. A raman–based investigation of the fate of Li2MnO3 in lithium–and manganese–rich cathode materials for lithium ion batteries[J]. J Electrochem Soc, 2015, 162(7): A1255–A1264.
[53]KAN Y, HU Y, LIN C K, et al. Migration of Mn cations in delithiated lithium manganese oxides[J]. Phys Chem Chem Phys, 2014, 16(38): 20697–20702.
[54]AMALRAJ S F, MARKOVSKY B, SHARON D, et al. Study of the electrochemical behavior of the “inactive” Li2MnO3[J]. Electrochim Acta, 2012, 78: 32–39.
[55]ARMSTRONG A R, ROBERTSON A D, BRUCE P G. Overcharging manganese oxides: extracting lithium beyond Mn4+[J]. J Power Sources, 2005, 146(1): 275–280.
[56]JOHNSON C S. Development and utility of manganese oxides as cathodes in lithium batteries[J]. J Power Sources, 2007, 165(2): 559–565.
[57]TANG W, KANOH H, YANG X, et al. Preparation of plate–form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions[J]. Chem Mater, 2000, 12(11): 3271–3279.
[58]AMALRAJ S F, SHARON D, TALIANKER M, et al. Study of the nanosized Li2MnO3: electrochemical behavior, structure, magnetic properties, and vibrational modes[J]. Electrochim Acta, 2013, 97: 259–270.
[59]LI Z, WANG Y, BIE X, et al. Low temperature properties of the Li[Li0.2Co0.4Mn0.4]O2 cathode material for Li–ion batteries[J]. Electrochem Commun, 2011, 13(9): 1016–1019.
[60]TRAN N, CROGUENNEC L, MÉNÉTRIER M, et al. Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system[J]. Chem Mater, 2008, 20(15): 4815–4825.
[61]JAIN G, YANG J, BALASUBRAMANIAN M, et al. Synthesis, electrochemistry, and structural studies of lithium intercalation of a nanocrystalline Li2MnO3–like compound[J]. Chem Mater, 2005, 17(15): 3850–3860.
[62]BOULINEAU A, CROGUENNEC L, DELMAS C, et al. Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM[J]. Chem Mater, 2009, 21(18): 4216–4222.
[63]BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed, 2008, 47(16): 2930–2946.
[64]BALAYA P, BHATTACHARYYA A J, JAMNIK J, et al. Nano–ionics in the context of lithium batteries[J]. J Power Sources, 2006, 159(1): 171–178.
[65]ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater, 2005, 4(5): 366–377.
[66]MAIER J. Size effects on mass transport and storage in lithium batteries[J]. J Power Sources, 2007, 174(2): 569–574.
[67]KOVACHEVA D, MARKOVSKY B, SALITRA G, et al. Electrochemical behavior of electrodes comprising micro–and nano–sized particles of LiNi0.5Mn1.5O4: a comparative study[J]. Electrochim Acta, 2005, 50(28): 5553–5560.
[68]FENG G X, LI L F, LIU J Y, et al. Enhanced electrochemical lithium storage activity of LiCrO2 by size effect[J]. J Mater Chem, 2009, 19(19): 2993–2998.
[69]MARTHA S K, SCLAR H, FRAMOWITZ Z S, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. J Power Sources, 2009, 189(1): 248–255.
[70]SCLAR H, KOVACHEVA D, ZHECHEVA E, et al. On the performance of LiNi1/3Mn1/3Co1/3O2 nanoparticles as a cathode material for lithium–ion batteries[J]. J Electrochem Soc, 2009, 156(11): A938–A948.
[71]JOHNSON C S, KORTE S D, VAUGHEY J T, et al. Structural and electrochemical analysis of layered compounds from Li2MnO3[J]. J Power Sources, 1999, 81: 491–495.
[72]PENKI T R, SHANMUGHASUNDARAM D, MUNICHANDRAIA H N. Polymer template–assisted microemulsion synthesis of large surface area, porous Li2MnO3 and its characterization as a positive electrode material of Li–ion cells[J]. J Solid State Electrochem, 2013, 17(12): 3125–3136.
[73]HUNTER J C. Preparation of a new crystal form of manganese dioxide: λ–MnO2[J]. J Solid State Chem, 1981, 39(2): 142–147.
[74]JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 (1–x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochem Commun, 2004, 6(10): 1085–1091.
[75]YUE P, WANG Z, LI X, et al. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution[J]. Electrochim Acta, 2013, 95: 112–118.
[76]KANG S H, AMINE K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55–0.5z) O2–zFz cathode materials for Li–ion secondary batteries[J]. J Power Sources, 2005, 146(1): 654–657.
[77]WU Y, MANTHIRAM A. Effect of Al3+ and F– doping on the irreversible oxygen loss from layered Li[Li0.17Mn0.58Ni0.25]O2 cathodes[J]. Electrochem Solid St, 2007, 10(6): A151–A154.
[78]ZHANG H, SONG T. Synthesis and performance of fluorine substituted Li1.05(Ni0.5Mn0.5)0.95O2–xFx cathode materials modified by surface coating with FePO4[J]. Electrochim Acta, 2013, 114: 116–124.
[79]LI L, SONG B H, CHANG Y L, et al. Retarded phase transition by fluorine doping in Li–rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J Power Sources, 2015, 283: 162–170.
[80]LEE S H, MOON J S, LEE M S, et al. Enhancing phase stability and kinetics of lithium–rich layered oxide for an ultra–high performing cathode in Li–ion batteries[J]. J Power Sources, 2015, 281: 77–84.
[81]SONG J H, KAPYLOU A, CHOI H S, et al. Suppression of irreversible capacity loss in Li–rich layered oxide by fluorine doping[J]. J Power Sources, 2016, 313: 65–72.
[82]PAN C, LEE Y J, AMMUNDSEN B, et al. 6Li MAS NMR studies of the local structure and electrochemical properties of Cr–doped lithium manganese and lithium cobalt oxide cathode materials for lithium–ion batteries[J]. Chem Mater, 2002, 14(5): 2289–2299.
[83]MORI D, SAKAEBE H, SHIKANO M, et al. Synthesis, phase relation and electrical and electrochemical properties of ruthenium–substituted Li2MnO3 as a novel cathode material[J]. J Power Sources, 2011, 196(16): 6934–6938.
[84]VAN BOMMEL A, KRAUSE L J, DAHN J R. Investigation of the irreversible capacity loss in the lithium–rich oxide Li[Li1/5Ni1/5Mn3/5]O2[J]. J Electrochem Soc, 2011, 158(6): A731–A735.
[85]TABUCHI M, KITTA M, KAGEYAMA H, et al. Mn source effects on electrochemical properties of Fe–and Ni–substituted Li2MnO3 positive electrode material[J]. J Power Sources, 2015, 279: 510–516.
[86]LIU Y, LIU S. Effect of cooling method on the electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathodes[J]. Ionics, 2013, 19(3): 477–481.
[87]JIANG J, DAHN J R. Insignificant impact of designed oxygen release from high capacity Li[(Ni1/2Mn1/2)xCoy(Li1/3Mn2/3)1/3]O2 (x+y=2/3) positive electrodes during the cycling of Li–ion cells[J]. Electrochim Acta, 2006, 51(17): 3413–3416.
[88]KANG S H, POL V G, BELHAROUAK I, et al. A Comparison of high capacity xLi2MnO3·(1–x)LiMO2 (M= Ni, Co, Mn) cathodes in lithium–ion cells with Li4Ti5O12–and carbon–encapsulated anatase TiO2 anodes[J]. J Electrochem Soc, 2010, 157(3): A267–A271.
[89]GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochem Commun, 2009, 11(1): 84–86.
[90]GAO J, MANTHIRAM A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. J Power Sources, 2009, 191(2): 644–647.
|