首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Li2MnO3活化机理及其影响因素的研究进展
作者:赵世玺1 郭双桃1 2 邓玉峰1 3 熊凯3 徐亚辉3 南策文2 
单位:1. 清华大学深圳研究生院新材料研究所 广东 深圳 518055 2. 清华大学材料学院 北京 100084 3. 淮安新能源材料技术研究院 江苏 淮安 223005 
关键词:锂离子电池 正极材料 锰酸锂 活化机理 
分类号:TK91
出版年,卷(期):页码:2017,45(4):495-503
DOI:10.14062/j.issn.0454-5648.2017.04.06
摘要:

层状结构富锂锰基固溶体以其高电压、大容量、低成本等优点有望成为下一代锂离子动力电池正极材料。但其使用过程中存在电压衰减、容量损失、向尖晶石相转变等问题,与Li2MnO3电化学活化有关,深入了解Li2MnO3电化学活化机制意义重大。本文综述了Li2MnO3的晶体结构以及电化学活化机理的相关研究,分析了测试温度、烧结制度、颗粒粒径、酸处理、离子掺杂等因素对其电化学活化的影响及作用机理,展望了富锂锰基正极材料的未来研究方向与应用前景。

 

 Li–rich Mn–based cathode materials are considered as the most promising candidate for the next–generation lithium ion batteries due to their high capacity, high voltage and low cost. However, their application is still restricted due to the presence of some problems like voltage decay, capacity loss, spinel–like transformation, etc. which are closely related to the activation of Li2MnO3 part. In this review, recent development on the structural information and activation mechanism of Li2MnO3 was summarized. The affecting factors (i.e., temperature, sintering procedure and particle size) and the corresponding mechanism were discussed. In addition, the development and application of Li–rich cathode materials were also prospected.

 
基金项目:
深圳市基础研究项目(JCYJ20140509172959973)
作者简介:
赵世玺(1966—),男,博士,副教授
参考文献:

[1]TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.

[2]WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem Rev, 2004, 104(10): 4271–4302.
[3]ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[4]YI T F, MEI J, ZHU Y R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high–voltage cathode materials for high power lithium–ion batteries[J]. J Power Sources, 2016, 316: 85–105.
[5]SHA Y, XU X, LI L, et al. Hierarchical carbon–coated acanthosphere–like Li4Ti5O12 microspheres for high–power lithium– ion batteries[J]. J Power Sources, 2016, 314: 18–27.
[6]MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel–rich and lithium–rich layered oxide cathodes: progress and perspectives[J]. Adv Energy Mater, 2016, 6(1):1–23.
[7]FENG X, YANG Z, TANG D, et al. Performance improvement of Li–rich layer–structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4[J]. Phys Chem Chem Phys, 2015, 17(2): 1257–1264.
[8]YE D, WANG B, CHEN Y, et al. Understanding the stepwise capacity increase of high energy low–Co Li–rich cathode materials for lithium ion batteries[J]. J Mater Chem A, 2014, 2(44): 18767–18774.
[9]CHO J, KIM Y J, PARK B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chem Mater, 2000, 12(12): 3788–3791.
[10]WANG J, SUN X. Olivine LiFePO4: the remaining challenges for future energy storage[J]. Energ Environ Sci, 2015, 8(4): 1110–1138.
[11]HU D H, ZHAO S X, DENG Y F, et al. Synthesis and electrochemical performance of rod–like spinel LiMn2O4 coated by Li–Al–Si–O solid electrolyte[J]. J Mater Chem A, 2013, 1(46): 14729–14735.
[12]DENG Y F, ZHAO S X, XU Y H, et al. Effect of temperature of Li2O–Al2O3–TiO2–P2O5 solid–state electrolyte coating process on the performance of LiNi0.5Mn1.5O4 cathode materials[J]. J Power Sources, 2015, 296: 261–267.
[13]LI J, CAO C, XU X, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano–micro hierarchical microspheres with enhanced performances as cathodes for lithium–ion batteries[J]. J Mater Chem A, 2013, 1(38): 11848–11852.
[14]LIM J M, KIM D, LIM Y G, et al. The origins and mechanism of phase transformation in bulk Li2MnO3: first–principles calculations and experimental studies[J]. J Mater Chem A, 2015, 3(13): 7066–7076.
[15]RUTHER R E, DIXIT H, PEZESHKI A M, et.al. Correlating local structure with electrochemical activity in Li2MnO3[J]. J Phys Chem C, 2015, 119(32): 18022–18029.
[16]GU M, BELHAROUAK I, ZHENG J, et al. Formation of the spinel phase in the layered composite cathode used in Li–ion batteries[J]. ACS Nano, 2012, 7(1): 760–767.
[17]LI Q, LI G S, FU C C , et al. Balancing stability and specific energy in Li–rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide[J]. J Mater Chem A, 2015(3): 10592–10602. 
[18]YU H, ZHOU H. High–energy cathode materials (Li2MnO3–LiMO2) for lithium–ion batteries[J]. J Phys Chem Lett, 2013, 4(8): 1268–1280.
[19]WEILL F, TRAN N, CROGUENNEC L, et al. Cation ordering in the layered Li1+x(Ni0.425Mn0.425Co0.15)1–xO2 materials (x=0 and 0.12)[J]. J Power Sources, 2007, 172(2): 893–900.
[20]BRÉGER J, JIANG M, DUPRÉ N, et al. High–resolution X–Ray diffraction, Diffax, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution[J]. J Solid State Chem, 2005, 178(9): 2575–2585.
[21]JANSEN M, HOPPE R. Zur Kenntnis Der Nacl–Strukturfamilie: Neue Untersuchungen an Li2MnO3[J]. Z Anorg Allge Chem, 1973, 397(3): 279–289.
[22]RIOU A, LECERF A, GERAULT Y, et al. Etude Structurale De Li2MnO3[J]. Mater Res Bull, 1992, 27(3): 269–275.
[23]SHAO–HORN Y, EIN–ELI Y, ROBERTSON A D, et al. Morphology modification and delithiation mechanisms of LiMn2O4 and Li2MnO3 by acid digestion[J]. J Electrochem Soc, 1998, 145(1): 16–23.
[24]WANG Z, REN Y, MA T, et al. Probing cation intermixing in Li2SnO3[J]. Rsc Adv, 2016, 6(37): 31559–31564.
[25]SARKAR S, MA·HALE P, MITRA S., Lithium rich composition of Li2RuO3 and Li2Ru1–XIrxO3 layered materials as Li–ion battery cathode[J]. J Electrochem Soc, 2014, 161(6): A934–A942.
[26]STROBEL P, LAMBERT–ANDRON B. Crystallographic and magnetic structure of Li2MnO3[J]. J Solid State Chem, 1988, 75(1): 90–98.
[27]YU S H, YOON T, MUN J, et al. Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033 O2 cathode material for lithium ion batteries[J]. J Mater Chem A, 2013, 1(8): 2833–2839.
[28]THACKERAY M M, KANG S H, JOHNSON C S, et el. Li2MnO3–stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium–ion batteries[J]. J Mater Chem, 2007, 17(30): 3112–3125.
[29]LIU X, SU Q, ZHANG C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sustain Chem Eng, 2015, 4(1): 255–263.
[30]MENG Y S, CEDER G, GREY C P, et al. Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation[J]. Electrochem Solid State Lett, 2004, 7(6): A155–A158.
[31]MENG Y, CEDER G, GREY C, et al. Cation ordering in layered O3 Li[NixLi1/3–2x/3Mn2/3–x/3]O2 (0≤x≤1/2) compounds[J]. Chem Mater, 2005, 17, 2386–2394.
[32]JOHNSON C S, LI N, LEFIEF C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1–x) LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7)[J]. Chem Mater, 2008, 20(19): 6095–6106.
[33]BOULINEAU A, CROGUENNEC L, DELMAS C, et al. Structure of Li2MnO3 with different degrees of defects[J]. Solid State Ionics, 2010, 180(40): 1652–1659.
[34]DENIS Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3[J]. J Electrochem Soc, 2009, 156(6): A417–A424.
[35]SAINT J A, DOEFF M M, REED J. Synthesis and electrochemistry of Li3MnO4: Mn in the +5 oxidation state[J]. J Power Sources, 2007, 172(1): 189–197.
[36]ROSSOUW M H, THACKERAY M M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Mater Res Bulletin, 1991, 26(6): 463–473.
[37]PARK S H, SATO Y, KIM J K K, et al. Powder property and electrochemical characterization of Li2MnO3 Material[J]. Mater Chem Phys, 2007, 102(2): 225–230.
[38]CROY J R, PARK J S, DOGAN F, et al. First–cycle evolution of local structure in electrochemically activated Li2MnO3[J]. Chem Mater, 2014, 26(24): 7091–7098.
[39]JIANG M, KEY B, MENG Y S, et al. Electrochemical and structural study of the layered “Li–excess” lithium–ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2[J]. Chem Mater, 2009, 21(13): 2733–2745.
[40]RANA J, STAN M, KLOEPSCH R, et al. Structural changes in Li2MnO3 cathode material for Li–ion batteries[J]. Adv Energy Mater, 2014, 4(5): 1–12
[41]JACOB C, JIAN J, SU Q, et al. Electrochemical and structural effects of in situ Li2O extraction from Li2MnO3 for Li–ion batteries[J]. ACS Appl Mater Interface, 2015, 7(4): 2433–2438.
[42]ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006, 128(26): 8694–8698.
[43]PAIK Y, GREY C P, JOHNSON C S, et al. Lithium and deuterium NMR studies of acid–leached layered lithium manganese oxides[J]. Chem Mater, 2002, 14(12): 5109–5115.
[44]ROBERTSON A D, BRUCE P G. Mechanism of electrochemical activity in Li2MnO3[J]. Chem Mater, 2003, 15(10): 1984–1992.
[45]YE D, SUN C, CHEN Y, et al. Ni–induced stepwise capacity increase in Ni–poor Li–rich cathode materials for high performance lithium ion batteries[J]. Nano Res, 2015, 8(3): 808–820.
[46]WANG R, HE X, HE L, et al. Atomic structure of Li2MnO3 after partial delithiation and re–lithiation[J]. Adv Energy Mater, 2013, 3(10): 1358–1367.
[47]KOYAMA Y, TANAKA I, NAGAO M, et al. First–principles study on lithium removal from Li2MnO3[J]. J Power Sources, 2009, 189(1): 798–801.
[48]LEE E, PERSSON K A. Structural and chemical evolution of the layered Li–excess LixMnO3 as a function of Li content from first–principles calculations[J]. Adv Energy Mater, 4(15):27-32.
[49]KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M'O3·(1–x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M'= Ti, Mn, Zr; 0≤x≤0.3)[J]. Chem Mater, 2004, 16(10): 1996–2006.
[50]DUPRÉ N, CUISINIER M, LEGALL E, et al. Contribution of the oxygen extracted from overlithiated layered oxides at high potential to the formation of the interphase[J]. J Power Sources, 2015, 299: 231–240.
[51]WEI Z, XIA Y, QIU B, et al. Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium–rich manganese–based material[J]. J Power Sources, 2015, 281: 7–10.
[52]WU Q, MARONI V A, GOSZTOLA D J, et al. A raman–based investigation of the fate of Li2MnO3 in lithium–and manganese–rich cathode materials for lithium ion batteries[J]. J Electrochem Soc, 2015, 162(7): A1255–A1264.
[53]KAN Y, HU Y, LIN C K, et al. Migration of Mn cations in delithiated lithium manganese oxides[J]. Phys Chem Chem Phys, 2014, 16(38): 20697–20702.
[54]AMALRAJ S F, MARKOVSKY B, SHARON D, et al. Study of the electrochemical behavior of the “inactive” Li2MnO3[J]. Electrochim Acta, 2012, 78: 32–39.
[55]ARMSTRONG A R, ROBERTSON A D, BRUCE P G. Overcharging manganese oxides: extracting lithium beyond Mn4+[J]. J Power Sources, 2005, 146(1): 275–280.
[56]JOHNSON C S. Development and utility of manganese oxides as cathodes in lithium batteries[J]. J Power Sources, 2007, 165(2): 559–565.
[57]TANG W, KANOH H, YANG X, et al. Preparation of plate–form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions[J]. Chem Mater, 2000, 12(11): 3271–3279.
[58]AMALRAJ S F, SHARON D, TALIANKER M, et al. Study of the nanosized Li2MnO3: electrochemical behavior, structure, magnetic properties, and vibrational modes[J]. Electrochim Acta, 2013, 97: 259–270.
[59]LI Z, WANG Y, BIE X, et al. Low temperature properties of the Li[Li0.2Co0.4Mn0.4]O2 cathode material for Li–ion batteries[J]. Electrochem Commun, 2011, 13(9): 1016–1019.
[60]TRAN N, CROGUENNEC L, MÉNÉTRIER M, et al. Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system[J]. Chem Mater, 2008, 20(15): 4815–4825.
[61]JAIN G, YANG J, BALASUBRAMANIAN M, et al. Synthesis, electrochemistry, and structural studies of lithium intercalation of a nanocrystalline Li2MnO3–like compound[J]. Chem Mater, 2005, 17(15): 3850–3860.
[62]BOULINEAU A, CROGUENNEC L, DELMAS C, et al. Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM[J]. Chem Mater, 2009, 21(18): 4216–4222.
[63]BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed, 2008, 47(16): 2930–2946.
[64]BALAYA P, BHATTACHARYYA A J, JAMNIK J, et al. Nano–ionics in the context of lithium batteries[J]. J Power Sources, 2006, 159(1): 171–178.
[65]ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater, 2005, 4(5): 366–377.
[66]MAIER J. Size effects on mass transport and storage in lithium batteries[J]. J Power Sources, 2007, 174(2): 569–574.
[67]KOVACHEVA D, MARKOVSKY B, SALITRA G, et al. Electrochemical behavior of electrodes comprising micro–and nano–sized particles of LiNi0.5Mn1.5O4: a comparative study[J]. Electrochim Acta, 2005, 50(28): 5553–5560.
[68]FENG G X, LI L F, LIU J Y, et al. Enhanced electrochemical lithium storage activity of LiCrO2 by size effect[J]. J Mater Chem, 2009, 19(19): 2993–2998.
[69]MARTHA S K, SCLAR H, FRAMOWITZ Z S, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. J Power Sources, 2009, 189(1): 248–255.
[70]SCLAR H, KOVACHEVA D, ZHECHEVA E, et al. On the performance of LiNi1/3Mn1/3Co1/3O2 nanoparticles as a cathode material for lithium–ion batteries[J]. J Electrochem Soc, 2009, 156(11): A938–A948.
[71]JOHNSON C S, KORTE S D, VAUGHEY J T, et al. Structural and electrochemical analysis of layered compounds from Li2MnO3[J]. J Power Sources, 1999, 81: 491–495.
[72]PENKI T R, SHANMUGHASUNDARAM D, MUNICHANDRAIA H N. Polymer template–assisted microemulsion synthesis of large surface area, porous Li2MnO3 and its characterization as a positive electrode material of Li–ion cells[J]. J Solid State Electrochem, 2013, 17(12): 3125–3136.
[73]HUNTER J C. Preparation of a new crystal form of manganese dioxide: λ–MnO2[J]. J Solid State Chem, 1981, 39(2): 142–147.
[74]JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 (1–x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochem Commun, 2004, 6(10): 1085–1091.
[75]YUE P, WANG Z, LI X, et al. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution[J]. Electrochim Acta, 2013, 95: 112–118.
[76]KANG S H, AMINE K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55–0.5z) O2–zFz cathode materials for Li–ion secondary batteries[J]. J Power Sources, 2005, 146(1): 654–657.
[77]WU Y, MANTHIRAM A. Effect of Al3+ and F– doping on the irreversible oxygen loss from layered Li[Li0.17Mn0.58Ni0.25]O2 cathodes[J]. Electrochem Solid St, 2007, 10(6): A151–A154.
[78]ZHANG H, SONG T. Synthesis and performance of fluorine substituted Li1.05(Ni0.5Mn0.5)0.95O2–xFx cathode materials modified by surface coating with FePO4[J]. Electrochim Acta, 2013, 114: 116–124.
[79]LI L, SONG B H, CHANG Y L, et al. Retarded phase transition by fluorine doping in Li–rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J Power Sources, 2015, 283: 162–170.
[80]LEE S H, MOON J S, LEE M S, et al. Enhancing phase stability and kinetics of lithium–rich layered oxide for an ultra–high performing cathode in Li–ion batteries[J]. J Power Sources, 2015, 281: 77–84.
[81]SONG J H, KAPYLOU A, CHOI H S, et al. Suppression of irreversible capacity loss in Li–rich layered oxide by fluorine doping[J]. J Power Sources, 2016, 313: 65–72.
[82]PAN C, LEE Y J, AMMUNDSEN B, et al. 6Li MAS NMR studies of the local structure and electrochemical properties of Cr–doped lithium manganese and lithium cobalt oxide cathode materials for lithium–ion batteries[J]. Chem Mater, 2002, 14(5): 2289–2299.
[83]MORI D, SAKAEBE H, SHIKANO M, et al. Synthesis, phase relation and electrical and electrochemical properties of ruthenium–substituted Li2MnO3 as a novel cathode material[J]. J Power Sources, 2011, 196(16): 6934–6938.
[84]VAN BOMMEL A, KRAUSE L J, DAHN J R. Investigation of the irreversible capacity loss in the lithium–rich oxide Li[Li1/5Ni1/5Mn3/5]O2[J]. J Electrochem Soc, 2011, 158(6): A731–A735.
[85]TABUCHI M, KITTA M, KAGEYAMA H, et al. Mn source effects on electrochemical properties of Fe–and Ni–substituted Li2MnO3 positive electrode material[J]. J Power Sources, 2015, 279: 510–516.
[86]LIU Y, LIU S. Effect of cooling method on the electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathodes[J]. Ionics, 2013, 19(3): 477–481.
[87]JIANG J, DAHN J R. Insignificant impact of designed oxygen release from high capacity Li[(Ni1/2Mn1/2)xCoy(Li1/3Mn2/3)1/3]O2 (x+y=2/3) positive electrodes during the cycling of Li–ion cells[J]. Electrochim Acta, 2006, 51(17): 3413–3416.
[88]KANG S H, POL V G, BELHAROUAK I, et al. A Comparison of high capacity xLi2MnO3·(1–x)LiMO2 (M= Ni, Co, Mn) cathodes in lithium–ion cells with Li4Ti5O12–and carbon–encapsulated anatase TiO2 anodes[J]. J Electrochem Soc, 2010, 157(3): A267–A271.
[89]GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochem Commun, 2009, 11(1): 84–86.
[90]GAO J, MANTHIRAM A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. J Power Sources, 2009, 191(2): 644–647.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com