首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
MCM–41介孔壳层包覆的核壳结构复合分子筛研究进展
作者:许俊强 张川 郭芳 田宝良 陈志 
单位:重庆理工大学化学化工学院 重庆 400054 
关键词:核壳结构 介孔分子筛 MCM–41分子筛 
分类号:TQ174.5
出版年,卷(期):页码:2017,45(4):592-600
DOI:10.14062/j.issn.0454-5648.2017.04.21
摘要:

 核壳结构复合分子筛具有开放的孔道层次结构、可调变的酸性、高的比表面积、较优的协同效应,可广泛应用于催化吸附、环境工程、生物医药等领域。综述了近年来以介孔MCM–41分子筛为壳层,不同类型的微孔晶粒和介孔晶粒为核的核壳结构复合分子筛的研究进展,分析了影响核壳结构复合介孔分子筛合成的主要影响因素,探讨了不同类型核壳结构复合分子筛的合成技术路线,阐释了合成参数和核壳结构及厚度等之间的关联度,并展望了核壳结构分子筛的发展前景。

 

Composite molecular sieves of core–shell structure are widely used in catalysis, adsorption, environmental engineering and biological medicine due to their open hierarchical channel structure, adjustable acidity, high specific surface area and superior synergistic effect. Recent development on the composite molecular sieves of core–shell structure with MCM–41 molecular sieve as shell and different types of microporous or mesoporous molecular sieves as core was reviewed. The main factors affecting the synthesis of the core–shell structure of the composite molecular sieves were analyzed. The synthesis routes of the composite molecular sieves were discussed. The relations among the synthetic parameters, the core–shell structure and thickness were explained. Moreover, the further developments of the core–shell structure composite molecular sieves were forecasted.

 
基金项目:
国家自然科学基金项目(21206202);重庆市重点产业共性关 键技术创新专项(cstc2016zdcy-ztzx0020-02);四川省科技计 划项目(2017GZ0421)。
作者简介:
许俊强(1979—),男,博士,教授。
参考文献:

 [1] DU X and HE J. Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications[J]. Nanoscale, 2011, 3 (10): 3984–4002.

[2] CHAUDHURI G R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem Rev, 2012, 112 (4): 2373–2433.
[3] JEONG G H, KIM E G, KIM S B, et al. Fabrication of sulfonic acid modified mesoporous silica shells and their catalytic performance with dehydration reaction of d–xylose into furfural[J]. Micropor Mesopor Mater, 2011, 144 (1–3): 134–139.
[4] JI Y J, ZHANG B, XU L, et al. Core/shell structured Al–MWW@B–MWW zeolites for shape–selective toluene disproportionation to para–xylene[J]. J Catal, 2011, 283 (2): 168–177.
[5] LI W, YANG J P, WU Z X, et al. A versatile kinetics controlled coating method to construct uniform porous TiO2 shells for multifunctional core shell structure[J]. J Am Chem Soc, 2012, 134 (29): 11864–11867.
[6] LI W, YUE Q, DENG Y H, et al. Ordered mesoporous materials based on interfacial assembly and engineering[J]. Adv Mater, 2013, 25 (37): 5129–5152, 5128.
[7] LI J J, YANG C J, WU Y Z, et al. A strategy for optical site–specific oxygen sensing: Construction and characterization of a Ru(II) modified magnetic luminescent hybrid composite[J]. Inorg Chim Acta, 2016, 441: 1–8.
[8] YANG X Z and LI Y X. Construction and O2 sensing performance of a core–shell structured magnetic mesoporous composite functionalized with a ruthenium complex[J]. Micropor Mesopor Mater, 2015, 215: 84–90.
[9] VENKATATHRI N, YUN D S , YOO J W. Influence of catalyst and solvent on the preparation of silica particles with mesoporous shell[J]. Mater Res Bull, 2009, 44 (6): 1317–1322.
[10] LI Y X, LIU Z C, XIE J P, et al. A nanocomposite with core–shell structure for site–specific oxygen sensing: Synthesis, characterization, photophysical feature and sensing performance [J]. Sensors Actuators B, 2015, 221: 312–319.
[11] 孔德金, 童伟益, 郑均林, 等. 核壳型沸石分子筛的合成–表征与应用[J]. 化学通报, 2008, 71 (4): 249–255.
KONG Dejin, TONG Weiyi, ZHENG Junlin. Chemistry(in Chinese), 2008, 71 (4): 249–255.
[12] 薛招腾, 唐雪婷, 王文兴, 等. 核壳结构的沸石分子筛复合材料研究进展[J]. 石油学报(石油加工), 2015, 31 (2): 228–243.
XUE Zhaoteng, TANG Xueting, WANG Wenxing, et al. Acta Petrol Sini (Petrol Process)(in Chinese), 2015, 31 (2): 228–243.
[13] 舒日洋, 龙金星, 张琦, 等. 核壳结构材料的制备及其应用[J]. 新能源进展, 2014, 2 (6): 423–429.
SHU Riyang, LONG Jinxing, ZHANG Qi, et al. Adv New Renew Energy (in Chinese), 2014, 2 (6): 423–429.
[14] CHU W, XU J, HONG J, et al. Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: Reducibility and performance (Review) [J]. Catal Today, 2015, 256: 41–48.
[15] XU J, CHU W, LUO S. Synthesis and characterization of mesoporous V–MCM–41 molecular sieves with good hydrothermal and thermal stability [J]. J Mol Catals A, 2006, 256 (1–2): 48–56.
[16] 许俊强, 储伟. DMDA对介孔V–MCM–41分子筛扩孔效应的影响[J]. 石油学报(石油化工), 2011, 27 (2): 269–274.
XU Junqiang,CHU Wei. Acta Petrol Sini(Petrol Process)(in Chinese), 2011, 27 (2): 269–274.
[17] 许俊强, 储伟. 硅源对合成介孔MCM–41分子筛结构–织构及其形貌的影响[J]. 硅酸盐学报, 2011, 39 (2): 278–284. 
XU Junqiang,CHU Wei. J Chin Ceram Soc, 2011, 39 (2): 278–284
[18] 许俊强, 储伟, 陈慕华, 等. 介孔分子筛V–MCM–41的水热法制备与合成机理[J]. 催化学报, 2006, 27 (8): 671–677. 
XU Junqiang, CHU Wei, CHEN Muhua. Chin J Catal(in Chinese), 2006, 27 (8): 671–677.
[19] 许俊强, 张丹, 郭芳, 等. 新型高效高稳定NOx催化还原用分子筛催化剂研究进展[J]. 硅酸盐学报, 2015, 43 (2): 241–250. 
XU Juqiang, ZHANG Dan, GUO Fang. J Chin Ceram Soc, 2015, 43 (2): 241–250
[20] 许俊强, 张强, 郭芳, 等. 微结构单元提高介孔MCM–41分子筛水热稳定性的研究进展[J]. 硅酸盐学报, 2014, 42 (8): 1070–1077. 
XU Juqiang, ZHANG Qiang, GUO Fang. J Chin Ceram Soc, 2014, 42 (8): 1070–1077.
[21] QIAN X F, LI B, HU Y Y, et al. Exploring me–so–/microporous composite molecular sieves with core–shell structures[J]. Chemistry, 2012, 18 (3): 931–939.
[22] 张志华, 阎子峰, 孙发民, 等. 一种微孔-介孔复合ZSM-5/MCM-41分子筛的合成方法[P]. CN 102464329 B. 2014–06–18.
[23] ZHANG Zhihua, YAN Zifeng, SUN Famin, et al. Syntheric method of mesoporous-microporous composite ZSM-5@MCM41 molecular sieve[P]. CN102464329B, 2014–06–18.
[24] JI Y, ZHANG B, ZHANG K, et al. Core/shell–structured ZSM–5@mesoporous silica composites for shape selective alkylation of toluene with methanol[J]. Acta Chim Sin, 2013, 71 (3): 371.
[25] LV Y, QIAN X, TU B, et al. Generalized synthesis of core–shell structured nano–zeolite@ordered meso–porous silica composites[J]. Catal Today, 2013, 204: 2–7.
[26] LIU X, YANG T, BAI P, et al. Y/MCM–41 composites assembled from nanocrystals[J]. Micropor Mesopor Mater, 2013, 181: 116–122.
[27] LIU L, SINGH R, LI G, et al. Synthesis of hydrophobic zeolite X@SiO2 core–shell composites[J]. Mater Chem Phys, 2012, 133 (2–3): 1144–1151.
[28] YU H, LV Y, MA K, et al. Synthesis of core–shell structured zeolite A@mesoporous silica composites for butyraldehyde adsorption[J]. J Colloid Interface Sci, 2014, 428: 251–256.
[29] LI S G, SONG G Q, MENG Y, et al. Synthesis and Characterization of the Novel NaA@mesosilica molecular sieves with core–shell structure[J]. Asian J Chem, 2013, 25 (13): 7216.
[30] DIAO Z H, WANG L, ZHANG X W, et al. Catalytic cracking of supercritical n–dodecane over meso–H–ZSM–5@Al–MCM–41 zeolites[J]. Chem Eng Sci, 2015, 135: 452–460.
[31] HAN Y, PITUKMANOROM P, ZHAO L, et al. Generalized synthesis of mesoporous shells on zeolite crystals [J]. Small, 2011, 7 (3): 326–332.
[32] JIA L X, SUN X Y, YE X Q, et al. Core–shell composites of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield[J]. Micropor Mesopor Mater, 2013, 176: 16–24.
[33] LI Y S, SHI J L, CHEN H R, et al. One–step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure[J]. Micropor Mesopor Mater, 2003, 60 (1–3): 51–56.
[34] QIAN X F, DU J M, LI B, et al. Controllable fabrication of uniform core–shell structured zeolite@SBA–15 composites[J]. Chem Sci, 2011, 2 (10): 2006.
[35] XU L, REN Y J, WU H H, et al. Core/shell–structured TS–1@mesoporous silica supported Au nanoparticles for selective epoxidation of propylene with H2 and O2[J]. J Mater Chem, 2011, 21 (29): 10852–10858.
[36] WEI S, WANG Q, ZHU J, et al. Multifunctional composite core–shell nanoparticles[J]. Nanoscale, 2011, 3 (11): 4474–4502.
[37] NIU D C, MA Z, LI Y S, et al. Synthesis of core–shell structured dual–mesoporous silica spheres with tunable pore size and controllable shell thickness[J]. J Am Chem Soc, 2010, 132 (43): 15144–15147.
[38] LÓPEZ–NORIEGA A, RUIZ–HERNÁNDEZ E, STEVENS S M, et al. Mesoporous microspheres with doubly ordered core–shell structure [J]. Chem Mater, 2008, 21 (1): 18–20.
[39] DIAO Z, WANG L, ZHANG X, et al. Catalytic cracking of supercritical n–dodecane over meso–HZSM–5@ Al–MCM–41 zeolites[J]. Chem Eng Sci, 2015, 135: 452–460.
[40] XIAN X, LIU G, ZHANG X, et al. Catalytic cracking of n–dodecane over HZSM–5 zeolite under supercritical conditions: Experiments and kinetics[J]. Chem Eng Sci, 2010, 65(20): 5588–5604.
[41] LI Y, ZHANG W, ZHANG L, et al. Direct synthesis of Al–SBA–15 mesoporous materials via hydrolysis–controlled approach[J]. J Phys Chem B, 2004, 108(28): 9739–9744.
[42] `WANG D, XU L, WU P. Hierarchical, core–shell meso–ZSM–5 mesoporous aluminosilicate supported Pt nanoparticles for bifunctional hydrocracking[J]. J Mater Chem A, 2014, 2 (37): 15535.
[43] LI J J, YANG C J, WU Y Z, et al. A strategy for optical site–specific oxygen sensing: Construction and characterization of a Ru(II) modified magnetic luminescent hybrid composite[J]. Inorg Chim Acta, 2016, 441: 1–8.
[44] YANG J P, LU F, CHEN J, et al. Sensing and magnetic removal of Hg(II) using core–shell structured nanocomposite grafted with fluorescence “Off–On” probe[J]. Micropor Mesopor Mater, 2015, 202: 175–182.
[45] ZHAO Y, CHEN X, Wan D. A magnetic mesoporous nano–composite modified with a ruthenium complex for site–specific molecular oxygen sensing: Construction and characterization[J]. Opt Mater, 2015, 46: 393–400.
[46] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 541.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com