首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
不同气氛制备的MoSi2/Al2O3复合材料显微结构与介电性能
作者:张聪1 武志红1 李妤婕1 丁冬海1 2 薛群虎1 
单位:1. 西安建筑科技大学材料与矿资学院 西安 710055 2. 中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室 上海 200050 
关键词:二硅化钼/氧化铝 复合材料 烧成气氛 显微结构 介电性能 
分类号:TB332
出版年,卷(期):页码:2017,45(6):765-770
DOI:10.14062/j.issn.0454-5648.2017.06.03
摘要:

 采用固相烧结法制备MoSi2/Al2O3复合材料,研究了空气、真空、Ar气氛对显微结构及介电性能的影响。结果表明:Ar气氛下试样烧结性能好于真空及空气气氛,MoSi2颗粒被Al2O3包覆且分散均匀;3种气氛下烧成的试样均含MoSi2、Al2O3和Mo5Si3相,而空气下发现有SiO2,真空及Ar保护气氛有少量Mo;空气气氛下烧成的复合材料气孔率最大,断裂韧性与抗弯强度最低;Ar保护气氛烧成后试样的断裂韧性与抗弯强度分别达到9.70 MPa·m1/2与179.5 MPa。随频率的增加,不同烧结气氛制备的MoSi2/Al2O3复合材料的介电常数和介电损耗均降低;随着烧结气氛从空气、真空、Ar气的变化,复合材料介电常数的实部和虚部均增加。

 MoSi2/Al2O3 composites were prepared by a solid-state sintering method. The microstructure and dielectric properties of the samples in different sintering atmospheres (i.e., air, vacuum and Ar) were investigated. The results show that the sintering performance of the specimens in Ar atmosphere is better than that in vacuum and in air atmospheres. The MoSi2 particles are coated with Al2O3 and dispersed evenly. MoSi2, Al2O3 and Mo5Si3 are in the composites after sintering in different atmospheres. SiO2 generates in air, and a small amount of Mo exists in vacuum and in Ar atmospheres. The porosity of composites sintered in air atmosphere is the greatest, and the fracture toughness and flexural strength are the lowest. The maximum fracture toughness and flexural strength of the composites after sintering in Ar atmosphere are 9.70 MPa·m1/2 and 179.5 MPa, respectively. The dielectric constant and loss of MoSi2/Al2O3 composite decrease with the increase of frequency in different atmospheres. The real and imaginary parts of the dielectric constant of the composite material increase with changing sintering atmosphere from air and vacuum to Ar.

 
基金项目:
国家自然科学基金(51502236,51372193);高温性能陶瓷与超微结构国家重点实验室开放课题(KL201403SIC);陕西省教育厅专项科研项目(14JK1393);西安建筑科技大学基础研究基金(JC1496)。
作者简介:
张 聪(1993—),女,硕士研究生。
参考文献:
[1]刘伯威, 潘进, 樊毅, 等. 掺碳SiC颗粒对MoSi2复合材料性能的影响[J]. 硅酸盐学报,2001, 29(3): 204–209.
LIU B W, PAN J, FAN Y, et al. J Chin Ceram Soc, 2001, 29(3): 204–209.
[2]MATTHEISS L F. Calculated structural properties of CrSi2, MoSi2 and WSi2[J]. Phys Rev B, 1992, 45(7): 3252–3259.
[3]乔英杰, 王志刚, 方双全. 碳纳米管改性MoSi2复合材料的研制及结构性能研究[J]. 稀有金属材料与工程, 2007, 36(1): 755–758.
QIAO Y J, WANG Z G, FANG S Q. Rare Met Mat Eng(in Chinese), 2007, 36(1): 755–758.
[4]张小亮, 黄诗婷, 高鹏召. SiC–MoSi2复合材料的制备及其性能的研究进展[J]. 硅酸盐通报, 2013, 32(12): 2520–2527.
ZHANG X L, HUANG S T, GAO P Z. J Chin Ceram Soc(in Chinese), 2013, 32(12): 2520–252.
[5]刘小良, 赵中伟, 徐慧, 等. MoSi2和WSi2电子结构及光学性质的数值研究[J]. 中南工业大学学报, 2009, 40(3): 568–574.
LIU X L, ZHAO Z W, XU H, et al. J Cent South Univ(in Chinese), 2009, 40(3): 568–574.
[6]高朋召, 张小亮, 黄诗婷, 等. 熔渗温度对MoSi2(Cr5Si3)–RSiC复合材料显微结构和性能的影响[J]. 硅酸盐学报, 2014, 42(9): 1105–1110.
GAO P Z, ZHANG X L, HHUANG S T, et al. J Chin Ceram Soc, 2014, 42(9): 1105–1110.
[7]焦更生, 卢国锋, 李贺军. 原位生成SiC–MoSi2–TiSi2涂层的工艺条件研究[J]. 功能材料, 2011, 42(10): 1847–1850.
JIAO G S, LU G F, LI H J. J Funct Mater(in Chinese), 2011, 42(10): 1847–1850.
[8]PETROVIC JOHN J. High temperature structural silicides[J]. Ceram Eng Sci Proceed, 2009(3): 1–5.
[9]王刚, 白光照, 赵世柯, 等. Na2O对氧化物/MoSi2基复合材料的高温蠕变特性的影响[J]. 硅酸盐学报, 2002, 30(5): 620–622.
WANG G, BAI G Z, ZHAO S K, et al. J Chin Ceram Soc, 2002, 30(5): 620–622.
[10]常春, 陈传忠, 孙文成, 等. SiC/55MoSi2材料的微观结构和电热性能[J]. 硅酸盐学报, 2003, 31(9): 862–866.
CHANG C, CHEN C Z, SUN W C, et al. J Chin Ceram Soc, 2003, 31(9): 862–866.
[11]YI D Q, LI C H. MoSi2–ZrO2 composites fabrication microstructures and properties[J]. Mater Sci Eng, 1999, 261(1/2): 89–98.
[12]SUN L, PAN J S. Fabrication and characterization of TiC particle reinforced MoSi2 composites[J]. J Eur Ceram. Soc, 2002, 22(5): 791–796.
[13]HEBSUR M G. Development and characterization of SiC(f)/MoSi2–Si3N4(p) hybrid Composites [J]. Mater Sci Eng A, 1999, 261(1/2): 24–37.
[14]RONCARI E, PINASCO P, NAGLIATIi M, et al .Tape casting of AlN–SiC–MoSi2 composites[J]. J Eur Ceram Soc, 2004, 24(8): 2303–2311.
[15]周曦亚, 方培育. 二硅化钼陶瓷的强韧化[J]. 中国陶瓷, 2006, 42(2): 19–21.
ZHOU X Y, FANG P Y. Chin Ceram(in Chinese), 2006, 42(2): 19–21. 
[16]胡小平, 黄之初. 温度对MoSi2/SiC配对副高温摩擦磨损性能的影响[J]. 功能材料, 2008, 39(9): 1470–1472.
HU X P, HUANG Z C. J Funct Mater(in Chinese), 2008, 39(9): 1470–1472.
[17]谭清华, 王玺堂. 不同烧结气氛下SiAlON结合刚玉材料的烧结行为和显微结构[J]. 耐火材料, 2006, 40(1): 4–8. 
TAN Q H, WANG X T. Refract(in Chinese), 2006, 40(1): 4–8.
[18]汤文明, 郑治祥. 烧结气氛对Al/Al2O3陶瓷基复合材料组成与性能的影响[J]. 理化检验-物理分册, 1998, 34(3): 9–11.
TANG W M, ZHENG Z X. Phys Test Chemanal Part A(in Chinese), 1998, 34(3): 9–11.
[19]韩亚苓, 杨亮. 烧结气氛对Al2O3/SiC纳米复合陶瓷显微组织的影响[J]. 沈阳工业大学学报, 2010, 32(3): 275–278.
HAN Y L, YANG Liang. J Shenyang Univ Technol(in Chinese), 2010, 32(3): 275–278.
[20]刘志林, 李志林, 刘伟东. 界面电子结构与界面性能[M]. 北京: 科学出版社, 2002: 175–177.
[21]陈国华. AlN/堇青石基玻璃陶瓷复合材料的显微组织与力学性能[J]. 中国有色金属学报, 2007, 17(10): 1644–1649.
CHEN G H. Chin J Nonferrous Met(in Chinese), 2007, 17(10): 1644–1649. 
[22]CHEN G H, LIU X Y. Influence of AlN addition on thermal and mechanical properties of cordierite-based glass/ceramic composites[J]. J Mater Process Technol, 2007, 190(1/3): 77–80.
[23]周玉, 雷廷权. Al2O3–ZrO2–SiCw陶瓷复合材料的断裂特点和韧化机理[J]. 材料研究学报, 1992, 6(2): 180–184.
ZHOU Y, LEI T Q. Chin J Mater Res(in Chinese), 1992, 6(2): 180–184.
[24]邓向允, 徐松林, 李广场, 等. 缺陷对玄武岩中声波波速影响的试验研究[J]. 实验力学, 2009, 24(1): 13–20.
DENG X Y, XU S L, LI G C J. Exp Mech(in Chinese), 2009, 24(1): 13–20.
[25]COSTA L C, HENRY F, VALENTE M A, et al. Electrical and dielectrical properties of the percolating system polystyrene/ polypyrrole particles[J]. Eur Polym J, 2002, 38(8): 1495–1499. 
[26]STUART J, PENN N M A, ALAN T. Effect of porosity and grain size on the microwave dielectric[J]. J Am Ceram Soc, 1997, 80(7): 1885–1888.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com