首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
新拌水泥基材料的流变特性、模型和测试研究进展
作者:刘豫1 2 史才军1 3 焦登武1 安晓鹏1 
单位:1. 中国建筑材料科学研究总院绿色建筑材料国家重点实验室 北京 100024 2. 河南理工大学材料科学与工程学院 河南 焦作 454000 3. 湖南大学土木工程学院 长沙 410082 
关键词:新拌水泥基材料 流变特性 流变机理 流变模型 测试方法 
分类号:TU528.01
出版年,卷(期):页码:2017,45(5):708-716
DOI:10.14062/j.issn.0454-5648.2017.05.17
摘要:

 新拌的水泥基材料是典型的屈服应力流体,由不同粒径的固体颗粒形成的悬浮液组成,其固体颗粒的范围从亚微米级到厘米级。当受到剪切作用时流体内部存在两种相反的作用,分别会导致流体发生剪切稀化和剪切增稠,流体的流变特性由二者共同决定。本文对新拌水泥基材料的流变机理、模型以及流变仪测量方面的研究进展进行了综述,对具有代表性的流变模型,包括Bingham模型、Modified Bingham模型和Herschel-Bulkley模型等的特点、适用条件等进行了分类总结。影响流变特性的主要因素是固体颗粒体积分数和剪切速率,当剪切速率与剪切应力之间存在非线性关系时,难以根据流变仪的测量数据建立流变方程。本文中讨论了一些建立模型的新方法,通过计算流体力学和离散元理论相结合可以较好地模拟水泥基材料流变特性。

 

 Fresh cementitious materials are a typical yield stress fluid. It is composed of many solid particles with different sizes,which the size distribution is from a few sub-microns to several centimeters. When it is sheared, the fluid endures two opposite  effects, which can lead to shear thinning and shear thickening, respectively. The rheological properties of the fluid are determined jointly by these two effects. The rheological mechanisms, models, and some measurement issues were summarized. Several typical rheological models, including the Bingham model, the modified Bingham model and the Herschel-Bulkley model, etc. were discussed. The features, conditions and ranges of models were classified and summarized. The volume fraction of solid particles and shear rate are the two main factors for rheological models. However, when a nonlinear relationship between shear stress and shear rate exists, sometimes it is difficult to build the rheological models based on the observed data. Some new modeling methods were discussed. In the field of computational simulation, the combination of computational fluid dynamics with discrete element method can be applied to simulate the rheological properties of cementitious materials more precisely.

 
基金项目:
国家国际科技合作专项(2015DFA50880)及国家自然基金No. U1305243 项目资助。
作者简介:
刘 豫(1973—),男,博士研究生,副教授。
参考文献:

 [1] Tattersall G H. The rheology of cement pastes, fresh mortars and concretes[D]. Thesis submitted to the University of London for the degree of MSc, 1954.

[2] Tattersall G H, BanfilL P. The Rheology of Fresh Concrete[M]. V 1st Ed. London: Pitman Advanced Pub. Program,  1983: 356.
[3] Roussel N. 聚合物和新拌混凝土性能研究进展[J]. 硅酸盐学报, 2015, 43(10): 1401?1407.
Roussel. J Chin Ceram Soc, 2015, 43(10): 1401?1407.
[4] Brown E, Jaeger H M. Through thick and thin[J]. Science 2011, 6047(333): 1230?1231.
[5] Brown E, Jaeger H M. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming[J]. Rep Prog Phys, 2014, 77(4): 1?24.
[6] Cheng X, Mccoy J H, Israelachvili J N, et al. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions[J]. Science, 2011, 333(6047): 1276?1279.
[7] Lootens D, H E Braud P, L E Colier E, et al. Gelation, shear-thinning and shear-thickening in cement slurries[J]. Oil Gas Sci Technol, 2004, 59(1): 31?40.
[8] Roussel N, Lemaître A, Flatt R J, et al. Steady state flow of cement suspensions: A micromechanical state of the art[J]. Cem Concr Res, 2010, 40(1): 77?84.
[9] BRady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[J]. J Fluid Mech, 1985, 155: 105?129.
[10] Cates M E, Wittmer J P, Bouchaud J, et al. Jamming, force chains, and fragile matter[J]. Phys Rev Lett, 1998, 81(9): 1841?1844.
[11] Bagnold R A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear [Z]. The Royal Society, 1954: 49?63.
[12] Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests[J]. J Colloid Interface Sci, 1974, 46(3): 491?506.
[13] Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions III. Necessary conditions for their occurrence in viscometric flows[J]. Adv Colloid Interface Sci, 1982, 17(1): 161?184.
[14] Laun H M, Bung R, Hess S, et al. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow)[J]. J Rheol, 1992, 36(4): 743?787.
[15] Feys D, Verhoeven R, De Schutter G. Why is fresh self-compacting concrete shear thickening?[J]. Cem Concr Res, 2009, 39(6): 510?523.
[16] Cyr M, Legrand C, Mouret M. Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives[J]. Cem Concr Res, 2000, 30(9): 1477?1483.
[17] Papo A, Piani L. Effect of various superplasticizers on the rheological properties of Portland cement pastes[J]. Cem Concr Res, 2004, 34(11): 2097?2101.
[18] Feys D, Verhoeven R, De Schutter G. Fresh self-compacting concrete, a shear thickening material[J]. Cem Concr Res, 2008, 38(7): 920?929.
[19] Yahia A. Shear-thickening behavior of high-performance cement grouts—Influencing mix-design parameters[J]. Cem Concr Res, 2011, 41(3): 230?235.
[20] Brown E, Forman N A, Orellana C S, et al. Generality of shear thickening in dense suspensions[J]. Nat Mater, 2010, 9(3): 220?224.
[21] Mouret M, Cyr M. A discussion of the paper “The effect of measuring procedure on the apparent rheological properties of self-compacting concrete” by Mette R. Geiker, Mari Brandl, Lars N. Thrane, Dirch H. Bager and Olafur Wallevik[J]. Cem Concr Res, 2003, 33(11): 1901?1903.
[22] Mahmoodzadeh F, Chidiac S E. Rheological models for predicting plastic viscosity and yield stress of fresh concrete[J]. Cem Concr Res, 2013, 49: 1?9.
[23] Papo A. Rheological models for cement pastes[J]. Mater Struct, 1988, 21(1): 41?46.
[24] Papo A. Rheological models for gypsum plaster pastes[J]. Rheol Acta, 1988, 27(3): 320?325.
[25] Papo A, Piani L. Flow behavior of fresh Portland cement pastes[J]. Particulate Sci Technol, 2004, 22(2): 201?212.
[26] Yahia A, Khayat K H. Analytical models for estimating yield stress of high-performance pseudoplastic grout [J]. Cem Concr Res, 2001, 31(5): 731?738.
[27] Atzeni C, Massidda L, Sanna U. Comparison between rheological models for portland cement pastes[J]. Cem Concr Res,  1985, 15(3): 511?519.
[28] Peng J, Deng D, Liu Z, et al. Rheological models for fresh cement asphalt paste[J]. Construct Build Mater, 2014, 71: 254?262.
[29] 彭建伟, 邓德华, 元强, 等. 硅酸盐水泥—阳离子乳化沥青浆体的流变模型[J]. 硅酸盐学报, 2014(5): 621?628.
Peng Jianwei, Deng Dehua, Yuan Qiang, et al. J Chin Ceram Soc, 2014, 42(5): 621?628.
[30] Nehdi M, Rahman M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction[J]. Cem Concr Res, 2004, 34(11): 1993?2007.
[31] Vance K, Sant G, Neithalath N. The rheology of cementitious suspensions: A closer look at experimental parameters and property determination using common rheological models[J]. Cem Concr Compos, 2015, 59: 38?48.
[32] Lapasin R, Papo A, Rajgelj S. The phenomenological description of the thixotropic behaviour of fresh cement pastes[J]. Rheol Acta, 1983, 22(4): 410?416.
[33] ROBERTSON R E. An improved mathematical model for relating shear stress to shear rate in drilling fluids and cement slurries [J]. Soc Petrol Eng J, 1976, 16(1): 31?36.
[34] STRUBLE L, SUN G. Viscosity of Portland cement paste as a function of concentration[J]. Adv Cem Based Mater, 1995, 2(2): 62?69.
[35] CHATEAU X, OVARLEZ G, TRUNG K L. Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids[J]. J Rheol, 2008, 52(2): 489?506.
[36] HAFID H, OVARLEZ G, TOUSSAINT F, et al. Estimating measurement artifacts in concrete rheometers from MRI measurement on model materials [C]// KHAYAT K H. Design, Production and Placement of Self-Consolidating Concrete. Montreal: Springer, 2010: 127?137.
[37] Banfill P. The rheology of fresh mortar[J]. Mag Concr Res, 1991, 43(154): 13?21.
[38] Hafid H, Ovarlez G, Toussaint F, et al. Assessment of potential concrete and mortar rheometry artifacts using magnetic resonance imaging[J]. Cem Concr Res, 2015, 71: 29?35.
[39] Feys D, Wallevik J E, Yahia A, et al. Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers[J]. Mater Struct, 2013, 46(1?2): 289?311.
[40] Wallevik O H, Feys D, Wallevik J E, et al. Avoiding inaccurate interpretations of rheological measurements for cement-based materials[J]. Cem Concr Res, 2015, 78: 100?109.
[41] Choi M S, Kim Y J, Kim J K. Prediction of concrete pumping using various rheological models[J]. Int J Concr Struct Mater, 2014, 8(4): 269?278.
[42] Feys D, Heirman G, De Schutter G, et al. Comparison of two concrete rheometers for shear thickening behaviour of SCC[C]. Self-compacting Concrete-SCC, 2007: 365?370.
[43] Feys D, Verhoeven R, Schutter G D. Evaluation of time independent rheological models applicable to fresh Self-Compacting Concrete[J]. Appl Rheol, 2007, 17(5): 336?355.
[44] Herschel W H, Bulkley R. Konsistenzmessungen von gummi-benzollösungen[J]. Kolloid-Zeitschrift, 1926, 39(4): 291?300.
[45] Jones T E R, Taylor S. A mathematical model relating the flow curve of a cement paste to its water/cement ratio[J]. Mag Concr Res, 1977, 29: 207?212.
[46] De Larrard F, Ferraris C F , Sedran T. Fresh concrete: A HerscheI-Bulkley material[J]. Mater Struct, 1998, 31(7): 494?498.
[47] Yahia A. Effect of solid concentration and shear rate on shear-thickening response of high-performance cement suspensions[J]. Construct Build Mater, 2014, 53: 517?521.
[48] Casson N. Rheology of disperse systems[Z]. Pergamon Press, New York, 1959: 84.
[49] DAmineli B L, John V M, Lagerblad B O R, et al. Viscosity prediction of cement-filler suspensions using interference model: A route for binder efficiency enhancement[J]. Cem Concr Res, 2016, 84: 8?19.
[50] Ofoli R Y, Morgan R G, Steffe J F. A generalized rheological model for inelastic fluid foods [J]. J Texture Studies, 1987, 18(3): 213?230.
[51] Lu G, Wang K, Rudolphi T J. Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics[J]. Cem Concr Compos, 2008, 30(1): 1?12.
[52] Chidiac S E, Mahmoodzadeh F. Constitutive flow models for characterizing the rheology of fresh mortar and concrete1[J]. Canadian J Civ Eng, 2013, 40(5): 475?482.
[53] Roussel N, Gram A. Simulation of Fresh Concrete Flow[J]. RILEM State-of-the-Art Reports, 2014: 15.
[54] Wallevik J E. Effect of the hydrodynamic pressure on shaft torque for a 4-blades vane rheometer[J]. Inte J Heat Fluid Flow, 2014, 50: 95?102.
[55] Zhu H, Martys N S, Ferraris C, et al. A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method[J]. J Non-Newtonian Fluid Mech, 2010, 165(7): 362?375.
[56] Hoornahad H, Koenders E A B. Simulating macroscopic behavior of self-compacting mixtures with DEM[J]. Cem Concr, Compos, 2014, 54: 80?88.
[57] Remond S, Pizette P. A DEM hard-core soft-shell model for the simulation of concrete flow[J]. Cem Concr Res, 2014, 58: 169?178.
[58] Mechtcherine V, Gram A, Krenzer K, et al. Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications[J]. Mater Struct, 2014, 47(4): 615?630.
[59] Cao G, Zhang H, Tan Y, et al. Study on the effect of coarse aggregate volume fraction on the flow behavior of fresh concrete via DEM[J]. Proc Eng, 2015, 102: 1820?1826.
[60] Banfill P, Beaupré D, Chapdelaine F, et al. Comparison of concrete rheometers[R]. International tests at LCPC. Nantes, France, NIST, 2000.
[61] Beaupré D, Chapdelaine F, Domone P, et al. Comparison of concrete rheometers[R]. International tests at MB [R]. Cleveland OH, USA, NIST, 2003.
[62] Koehler E P. ICAR Rheometer User’s Manual[R]. Germann Instruments, Evanston, 2007: 23.
[63] Koehler E P, Fowler D W. Development of a portable rheometer for fresh portland cement concrete[R]. Research report ICAR, 105-3F, Austin: International center for Aggregates research, 2004: 31?36.
[64] Reiner M, Riwlin R. Die Theorie der Strömung einer elastischen Flüssigkeit im Couette-Apparat[J]. Colloid Polymer Sci, 1927, 43(1): 1?5.
[65] Heirman G, Vandewalle L, Van Gemert D, et al. Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer[J]. J Non-Newtonian Fluid Mech, 2008, 150(2/3): 93?103.
[66] Krieger I M, Maron S H. Direct determination of the flow curves of non-Newtonian fluids[J]. J App Phys, 1952, 23(1): 147?149.
[67] Krieger I M, Elrod H. Direct determination of the flow curves of non-Newtonian fluids. II. Shearing rate in the concentric cylinder viscometer[J]. J App Phys, 1953, 24(2): 134?136.
[68] Krieger I M, Maron S H. Direct determination of the flow curves of non-Newtonian fluids. III. Standardized treatment of viscometric data[J]. J App Phys, 1954, 25(1): 72.
[69] Huang C. Determination of the shear rates of non-Newtonian fluids from rotational viscometric data. I. Concentric cylinder viscometer[J]. J Rheol, 1971, 15(1): 31?37.
[70] ANcey C. Solving the Couette inverse problem using a wavelet-vaguelette decomposition[J]. J Rheol, 2005, 49(2): 441?460.
[71] Yeow Y L, Ko W C, Tang P P P. Solving the inverse problem of Couette viscometry by Tikhonov regularization[J]. J Rheol, 2000, 44(6): 1335?1351.
[72] Estell E P, Lanos C, Perrot A. Processing the Couette viscometry data using a Bingham approximation in shear rate calculation[J]. J Non-Newtonian Fluid Mech, 2008, 154(1): 31?38.
[73] Ovarlez G, Bertrand F C C O, Rodts S E P. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging[J]. J Rheol, 2006, 50(3): 259?292.
[74] Ovarlez G, Barral Q, Coussot P. Three-dimensional jamming and flows of soft glassy materials[J]. Nat Mater, 2010, 9(2): 115?119.
[75] JArny S, Roussel N, Le Roy R, et al. Modelling thixotropic behavior of fresh cement pastes from MRI measurements[J]. Cem Concr Res, 2008, 38(5): 616?623.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com