首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
富锂锰基层状正极材料的表面包覆改性
作者:李栋1 赖华2 罗诗健1 刘小林1 王春香1 钟盛文1 
单位:1. 江西理工大学 材料科学与工程学院 赣州 341000 江西 2. 江西理工大学 资源环境与工程学院 赣州 341000 江西 
关键词:锂离子电池 层状正极材料 高比容量 结构稳定性 界面稳定性 
分类号:O614.11;TM912
出版年,卷(期):页码:2017,45(7):0-0
DOI:10.14062/j.issn.0454-5648.2017.07.03
摘要:

 简述了富锂锰基层状正极材料的结构、电化学性能特征及存在的问题,着重阐述了富锂锰基层状材料的碳、氧化物、氟化物、磷酸盐等表面包覆改性对其倍率性能和循环稳定性的影响,讨论了表面包覆改性的机理和改性中有待改进的关键问题。

 

 The crystal structure, electrochemical performance, of Li-rich manganese-based layered oxide (LLO) were reviewed. The effects of coating materials, such as carbon, metal oxides, metal ?uorides and metal phosphates, on the rate capability and cycle stabilization of LLO were discussed. In addition, recent development and future research on the mechanism of coating was also summarized.

 
基金项目:
江西省科技支撑计划项目(20151BBE50106,20141BBE50019);江西省自然科学基金项目(20142BAB216018,20151BAB206018);江西省教育厅自然科学基金项目(GJJ14444,GJJ150671);江西理工大学科研基金(NSFJ2015–K08,NSFJ2014–G13,3401223172);大学生创新创业项目(XZG–15–08–09)。
作者简介:
李 栋(1982―),男,博士,讲师。
参考文献:

 [1]THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem, 2007, 17(30): 3112–3125.

[2]KANG S H, KEMPGENS P, GREENBAUM S, et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5–xNi0.5–xCo2x, 0≤x≤0.5)[J]. J Mater Chem, 2007, 17(20): 2069–2077.
[3]JARVIS K A, DENG Z, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution[J]. Chem Mater, 2011, 23(16): 3614–3621.
[4]YU H, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Angew Chem Int Ed, 2013, 52, 5969–5973.
[5]QIAO Q Q, LI G R, WANG Y L, et al. To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries[J]. J Mater Chem A, 2016, 4(12): 4440–4447.
[6]LUO D, FANG S, TIAN Q, et al. Discovery of a surface protective layer: A new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries[J]. Nano Energy, 2016, 21: 198–208.
[7]YU H, SO Y G,  KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Lett, 2016, 16(5): 2907–2915.
[8]ZHENG J, XU P, GU M, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chem Mater, 2015, 27(4): 1381–1390.
[9]ARMSTRONG A R, HOLZAPFEL M, NOVAKA P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006, 128: 8694–9698.
[10]SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chem, 2016, 8(7): 692–697.
[11]QIU B, ZHANG M, WU L, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nat Commun, 2016, 7: 12108.
[12]ZHANG X, YIN Y, HU Y, et al. Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2[J]. Electrochim Acta, 2016, 193: 96–103.
[13]ZHANG X, YANG Y, SUN S, et al. Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2[J]. Solid State Ionics, 2016, 284: 7–13.
[14]XU M, LIAN Q, WU Y, et al. Li+-conductive Li2SiO3 stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries[J]. RSC Adv, 2016, 6(41): 34245–34253.
[15]WU F, LIU J, LI L, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer[J]. ACS Appl Mater Interf, 2016, 8(35): 23095–23104.
[16]SUN K, PENG C, LI Z, et al. Hybrid LiV3O8/carbon encapsulated Li1.2Mn0.54Co0.13Ni0.13O2 with improved electrochemical properties for lithium ion batteries[J]. RSC Adv, 2016, 6(34): 28729–28736.
[17]KONG J Z, REN C, JIANG Y X, et al. Li-ion-conductive Li2TiO3-coated Li[Li0.2Mn0.51Ni0.19Co0.1]O2 for high performance cathode material in lithium-ion battery[J]. J Solid State Electrochem, 2016, 20(5): 1435–1443.
[18]JIN Y, XU Y, SUN X, et al. Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency[J]. Appl Surf Sci, 2016, 384: 125–134.
[19]CHEN D, TU W, CHEN M, et al. Synthesis and performances of Li-rich@AlF3@graphene as cathode of lithium ion battery[J]. Electrochim Acta, 2016, 193: 45–53.
[20]ZHENG F, YANG C, XIONG X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angew Chem Int Ed, 2015, 54(44): 13058–13062.
[21]ZHAO E, LIU X, ZHAO H, et al. Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization[J]. Chem Commun, 2015, 51(44): 9093–9096.
[22]ZHANG J, LEI Z, WANG J, et al. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries[J]. ACS Appl Mater Interf, 2015, 7(29): 15821–15829.
[23]XIE Q, ZHAO C, HU Z, et al. LaPO4-coated Li1.2Mn0.56Ni0.16Co0.08O2 as a cathode material with enhanced coulombic efficiency and rate capability for lithium ion batteries[J]. RSC Adv, 2015, 5(94): 77324–77331.
[24]XIA Q, ZHAO X, XU M, et al. A Li-rich Layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J]. J Mater Chem A, 2015, 3(7): 3995–4003.
[25]WANG D, LI X, WANG Z, et al. Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material[J]. J Alloys Compd, 2015, 647: 612–619.
[26]SUN Y Y, LI F, QIAO Q Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries[J]. Electrochim Acta, 2015, 176: 1464–1475.
[27]SUN S, YIN Y, WAN N, et al. AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries[J]. Chem Sus Chem, 2015, 8(15): 2544–2550.
[28]SUN S, WAN N, WU Q, et al. Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery[J]. Solid State Ionics, 2015, 278: 85–90.
[29]LIU X, HUANG T, YU A. Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes[J]. Electrochim Acta, 2015, 163: 82–92.
[30]LIU H, QIAN D, VERDE M G, et al. Understanding the role of NH4F and Al2O3 surface Co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2[J]. ACS Appl Mater Interf, 2015, 7(34): 19189–19200.
[31]GUO L, ZHAO N, LI J, et al. Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries[J]. ACS Appl Mater Interf, 2015, 7(1): 391–399.
[32]YUAN W, ZHANG H Z, LIU Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries[J]. Electrochim Acta, 2014, 135: 199–207.
[33]XU G, LI J, XUE Q, et al. Elevated electrochemical performance of (NH4)3AlF6 coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method[J]. Electrochim Acta, 2014, 117: 41–47
[34]SONG B, ZHOU C, CHEN Y, et al. Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode[J]. RSC Adv, 2014, 4(83): 44244–44252
[35]MENG H, JIN H, GAO J, et al. Pr6O11-coated high capacity layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 as a cathode material for lithium ion batteries[J]. J ElectroChem Soc, 2014, 161 (10): A1564–A1571.
[36]MAUGER A, JULIEN C. Surface modifications of electrode materials for lithium-ion batteries: status and trends[J]. Ionics, 2014, 20(6): 751–787.
[37]LIU Y, HUANG X, QIAO Q, et al. Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries[J]. Electrochim Acta, 2014, 147: 696–703.
[38]SUN Y K, LEE M J, YOON C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Adv Mater, 2012, 24(9): 1192–1196.
[39]LI Z, CHEMOVA N A, FENG J, et al. Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries[J]. J Electrochem Soc, 2012, 159(2): A116–A120
[40]LI G R, FENG X, DING Y, et al. AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries[J]. Electrochim Acta, 2012, 78: 308–315.
[41]WANG Q Y, LIU J, MURUGAN A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. J Mater Chem, 2009, 19(28): 4965–4972.
[42]ZHENG J M, ZHANG Z R, WU X B, et al. The effects of alf3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J]. J Electrochem Soc, 2008, 155(10): A775–A782.
[43]YANG Y, ZHENG J M, LI J, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery[J]. Solid State Ionics, 2008, 179(27/32): 1794–1799.
[44]KUMAGAI N, KIM J M, SYO T, et al. Structural modification of Li[Li0.27Co0.20Mn0.53]O2 by lithium extraction and its electrochemical property as the positive electrode for Li-ion batteries[J]. Electrochim Acta, 2008, 53: 5287–5293.
[45]ZHAO T, LI L, CHEN R, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy, 2015, 15: 164–176.
[46]CHEN J J, LI Z D, XIANG  H F, et al. Bifunctional effects of carbon coating on high-capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries[J]. J Solid State Electrochem, 2015, 19(4): 1027–1035.
[47]吴晓彪, 董志鑫, 郑建明, 等. 锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2的碳包覆研究[J]. 厦门大学学报: 自然科学版 (in Chinese), 2008, 47(2): 224–227.
WU Xiaobo, DONG Zhixin, ZHENG Jianming, et al. J Xiamen Univ: Nat Sci, 2008, 47(2): 224–227.
[48]MA D, ZHANG P, LI Y, et al. Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-Ion batteries[J]. Sci Rep, 2015, 5: 11257.
[49]侯孟炎, 王珂, 董晓丽, 等. 石墨烯包覆富锂层状材料的制备及其电化学性能[J]. 电化学, 2015, 21(3): 195–200.
HOU Mengyan, WANG Ke, DONG Xiaoli, et al. J Electrochem (in Chinese), 2015, 21(3): 195–200.
[50]HE Z, WANG Z, GUO H, et al. A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries[J]. Mater Lett, 2013, 91: 261–264.
[51]SONG B, LAI M O, LIU Z, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries[J]. J Mater Chem A, 2013, 1(34): 9954–9965.
[52]KIM I T, KNIGHT J C, CELIO H, et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating[J]. J Mater Chem A, 2014, 2(23): 8696.
[53]ZHUO H, ZHNAG Y, WANG D, et al. Insight into lithium-rich layered cathode materials Li[Li0.1Ni0.45Mn0.45]O2 in situ coated with graphene-like carbon[J]. Electrochim Acta, 2014, 149: 42–48.
[54]XUE Q, LI J, XU G, et al. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries[J]. J Mater Chem A, 2014, 2(43): 18613–18623.
[55]AHN D, KOO Y M, KIM M G, et al. polyaniline nanocoating on the surface of layered Li[Li0.2Co0.1Mn0.7]O2 nanodisks and enhanced cyclability as a cathode electrode for rechargeable lithium-ion battery[J]. J Phys Chem C, 2010, 114(8): 3675–3680.
[56]SHI S J, TU J P, MAI Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries[J]. Electrochim Acta, 2012, 63: 112–117.
[57]LIU J, WANG Q, REEJA-JAYAN B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. Electrochem Commun., 2010, 12(6): 750–753.
[58]SHI S J, TU J P, TANG Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method[J]. Electrochim Acta, 2013, 88: 671–679.
[59]KOBAYASHI G, IRII Y, MATSUMOTO F, et al. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling[J]. J Power Sources, 2016, 303: 250–256.
[60]ZOU G, YANG X, WANG X, et al. Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3[J]. J Solid State Electrochem, 2014, 18(7): 1789–1797.
[61]MYUNG S T, IZUMI K, KOMABA S, et al. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for Li ion secondary batteries[J]. J Phys Chem C, 2007, 111: 4061–4067.
[62]HE W, QIAN J, CAO Y, et al. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. RSC Adv, 2012, 2(8): 3423–3429.
[63]WANG Z, LIU E, GUO L, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating[J]. Surf Coat Technol, 2013, 235: 570–576.
[64]LEE H J,PARK Y J. Synthesis of Li[Ni0.2Li0.2Mn0.6]O2 nano-particles and their surface modification using a polydopamine layer[J]. J Power Sources, 2013, 244: 222–233.
[65]LEE G H, CHOI I H, OH M Y, et al. Confined ZrO2 encapsulation over high capacity integrated 0.5Li[Ni0.5Mn1.5]O4·0.5[Li2MnO3·Li(Mn0.5Ni0.5)O2] cathode with enhanced electrochemical performance[J]. Electrochim Acta, 2016, 194: 454–460.
[66]UZUN D, Do?rusöz M, MAZMAN M, et al. Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries[J]. Solid State Ionics, 2013, 249/250: 171–176.
[67]GUO S, YU H, LIU P, et al. Surface coating of lithium– manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries[J]. J Mater Chem A, 2014, 2(12): 4422–4428.
[68]WU F, LI N, SU Y, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?[J]. J Mater Chem, 2012, 22(4): 1489–1497.
[69]LIU J, MANTHIRAM A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. J Mater Chem, 2010, 20(19): 3961–3967.
[70]LI B, LI C, CAI J, et al. In situ nano-coating on Li1.2Mn0.54Ni0.13Co0.13O2 with a layered@spinel@coating layer heterostructure for lithium-ion batteries[J]. J Mater Chem A, 2015, 3(42): 21290–21297.
[71]SHI S J, TU J P, ZHANG Y J, et al. Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries[J]. Electrochim Acta, 2013, 108: 441–448.
[72]CHEN C, GENG T, DU C, et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries[J]. J Power Sources, 2016, 331: 91–99.
[73]WANG C, ZHOU F, CHEN K, et al. Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. Electrochim Acta, 2015, 176: 1171–1181.
[74]GUAN X, DING B, LIU X, et al. Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel–manganese composite oxide[J]. J Solid State Electrochem, 2013, 17(7): 2087–2093.
[75]ZHU X, WANG Y, SHANG K, et al. Improved rate capability of the conducting functionalized FTO-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. J Mater Chem A, 2015, 3(33): 17113–17119.
[76]XU M, CHEN Z, ZHU H, et al. Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials[J]. J Mater Chem A, 2015, 3(26): 13933–13945.
[77]LIAN F, GAO M, MA L, et al. The effect of surface modification on high capacity Li1.375Ni0.25Mn0.75O2+γ cathode material for lithium-ion batteries[J]. J Alloys Compd, 2014, 608: 158–164.
[78]PANG S, WANG Y, CHEN T, et al. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide[J]. Ceram Int, 2016, 42(4): 5397–5402.
[79]ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials[J]. Chem Mater, 2014, 26(22): 6320–6327.
[80]CHONG S, CHEN Y, YAN W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries[J]. J Power Sources, 2016, 332: 230–239.
[81]LI L, CHANG Y L, XIA H, et al. NH4F surface modification of Li-rich layered cathode materials[J]. Solid State Ionics, 2014, 264: 36–44.
[82]LU C, WU H, ZHANG Y, et al. Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries[J]. J Power Sources, 2014, 267: 682–691.
[83]KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. J Alloys Compd, 2012, 517: 20–25.
[84]WANG Z, LUO S, REN J, et al. Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4[J]. Appl Surf Sci, 2016, 370: 437–444.
[85]BIAN X, FU Q, BIE X, et al. Improved Electrochemical Performance and Thermal Stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 Cathode Material by Li3PO4 Surface Coating[J]. Electrochim Acta, 2015, 174: 875–884.
[86]LEE Y, LEE J, LEE  K Y, et al. Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries[J]. J Power Sources, 2016, 315: 284–293.
[87]LIU H, CHEN C, DU C, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries[J]. J Mater Chem A, 2015, 3(6): 2634–2641.
[88]WU Y, VADIVEL MURUGAN A,MANTHIRAM A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4[J]. J Electrochem Soc., 2008, 155(9): A635–A641.
[89]LEE S H, KOO B K, KIM J C, et al. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries[J]. J Power Sources, 2008, 184(1): 276–283.
[90]WANG Z, LIU E, HE C, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries[J]. J Power Sources, 2013, 236: 25–32.
[91]CHEN J J, LI Z D, XIANG H F, et al. Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries[J]. RSC Adv, 2015, 5(4): 3031–3038.
[92]CHO S W, KIM G O, RYU K S. Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries[J]. Solid State Ionics, 2012, 206: 84–90.
[93]LIU W, OH P, LIU X, et al. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 ℃ by hybrid surface protection layers[J]. Adv. Energy Mater., 2015, 5(13): 1500274(1–11).
[94]LIU X, SU Q, ZHANG C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sus Chem Eng, 2016, 4(1): 255–263.
[95]LIU Y, WANG Q, WANG X, et al. Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with fast ionic conductor Li3VO4 coating[J]. Ionics, 2015, 21(10): 2725–2733.
[96]ZHAO E, LIU X, HU Z, et al. Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries[J]. J Power Sources, 2015, 294: 141–149.
[97]BIAN X, FU Q, QIU H, et al. High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 heterostructured cathode material coated with a lithium borate oxide glass layer[J]. Chem Mater, 2015, 27(16): 5745–5754.
[98]HUANG X, QIAO Q, SUN Y, et al. Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 coated with LiAlO2[J]. J Solid State ElectroChem, 2014, 19(3): 805–812.
[99]彭继明, 陈玉华, 李玉, 等. 表面活性剂对Li7La3Zr2O12包覆富锂锰基层状正极材料的影响[J]. 硅酸盐学报, 2016, 44(4): 493–397.
PENG Jiming, CHENG Yuhua, LI Yu, et al. J Chin Ceram Soc, 2016, 44(4): 493–497
[100]WU F, LI N, SU Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries[J]. Nano Lett, 2014, 14(6): 3550–3555.
[101]BIAN X, FU Q, PANG Q, et al. Multi-functional surface engineering for Li-excess layered cathode material targeting excellent electrochemical and thermal safety properties[J]. ACS Appl Mater Interf, 2016, 8(5): 3308–3318.
[102]KONG J Z, WANG C L, QIAN X, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2[J]. Electrochim Acta, 2015, 174: 542–550.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com