[1]THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem, 2007, 17(30): 3112–3125.
[2]KANG S H, KEMPGENS P, GREENBAUM S, et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5–xNi0.5–xCo2x, 0≤x≤0.5)[J]. J Mater Chem, 2007, 17(20): 2069–2077.
[3]JARVIS K A, DENG Z, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution[J]. Chem Mater, 2011, 23(16): 3614–3621.
[4]YU H, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Angew Chem Int Ed, 2013, 52, 5969–5973.
[5]QIAO Q Q, LI G R, WANG Y L, et al. To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries[J]. J Mater Chem A, 2016, 4(12): 4440–4447.
[6]LUO D, FANG S, TIAN Q, et al. Discovery of a surface protective layer: A new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries[J]. Nano Energy, 2016, 21: 198–208.
[7]YU H, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Lett, 2016, 16(5): 2907–2915.
[8]ZHENG J, XU P, GU M, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chem Mater, 2015, 27(4): 1381–1390.
[9]ARMSTRONG A R, HOLZAPFEL M, NOVAKA P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006, 128: 8694–9698.
[10]SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chem, 2016, 8(7): 692–697.
[11]QIU B, ZHANG M, WU L, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nat Commun, 2016, 7: 12108.
[12]ZHANG X, YIN Y, HU Y, et al. Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2[J]. Electrochim Acta, 2016, 193: 96–103.
[13]ZHANG X, YANG Y, SUN S, et al. Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2[J]. Solid State Ionics, 2016, 284: 7–13.
[14]XU M, LIAN Q, WU Y, et al. Li+-conductive Li2SiO3 stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries[J]. RSC Adv, 2016, 6(41): 34245–34253.
[15]WU F, LIU J, LI L, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer[J]. ACS Appl Mater Interf, 2016, 8(35): 23095–23104.
[16]SUN K, PENG C, LI Z, et al. Hybrid LiV3O8/carbon encapsulated Li1.2Mn0.54Co0.13Ni0.13O2 with improved electrochemical properties for lithium ion batteries[J]. RSC Adv, 2016, 6(34): 28729–28736.
[17]KONG J Z, REN C, JIANG Y X, et al. Li-ion-conductive Li2TiO3-coated Li[Li0.2Mn0.51Ni0.19Co0.1]O2 for high performance cathode material in lithium-ion battery[J]. J Solid State Electrochem, 2016, 20(5): 1435–1443.
[18]JIN Y, XU Y, SUN X, et al. Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency[J]. Appl Surf Sci, 2016, 384: 125–134.
[19]CHEN D, TU W, CHEN M, et al. Synthesis and performances of Li-rich@AlF3@graphene as cathode of lithium ion battery[J]. Electrochim Acta, 2016, 193: 45–53.
[20]ZHENG F, YANG C, XIONG X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angew Chem Int Ed, 2015, 54(44): 13058–13062.
[21]ZHAO E, LIU X, ZHAO H, et al. Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization[J]. Chem Commun, 2015, 51(44): 9093–9096.
[22]ZHANG J, LEI Z, WANG J, et al. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries[J]. ACS Appl Mater Interf, 2015, 7(29): 15821–15829.
[23]XIE Q, ZHAO C, HU Z, et al. LaPO4-coated Li1.2Mn0.56Ni0.16Co0.08O2 as a cathode material with enhanced coulombic efficiency and rate capability for lithium ion batteries[J]. RSC Adv, 2015, 5(94): 77324–77331.
[24]XIA Q, ZHAO X, XU M, et al. A Li-rich Layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J]. J Mater Chem A, 2015, 3(7): 3995–4003.
[25]WANG D, LI X, WANG Z, et al. Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material[J]. J Alloys Compd, 2015, 647: 612–619.
[26]SUN Y Y, LI F, QIAO Q Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries[J]. Electrochim Acta, 2015, 176: 1464–1475.
[27]SUN S, YIN Y, WAN N, et al. AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries[J]. Chem Sus Chem, 2015, 8(15): 2544–2550.
[28]SUN S, WAN N, WU Q, et al. Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery[J]. Solid State Ionics, 2015, 278: 85–90.
[29]LIU X, HUANG T, YU A. Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes[J]. Electrochim Acta, 2015, 163: 82–92.
[30]LIU H, QIAN D, VERDE M G, et al. Understanding the role of NH4F and Al2O3 surface Co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2[J]. ACS Appl Mater Interf, 2015, 7(34): 19189–19200.
[31]GUO L, ZHAO N, LI J, et al. Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries[J]. ACS Appl Mater Interf, 2015, 7(1): 391–399.
[32]YUAN W, ZHANG H Z, LIU Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries[J]. Electrochim Acta, 2014, 135: 199–207.
[33]XU G, LI J, XUE Q, et al. Elevated electrochemical performance of (NH4)3AlF6 coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method[J]. Electrochim Acta, 2014, 117: 41–47
[34]SONG B, ZHOU C, CHEN Y, et al. Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode[J]. RSC Adv, 2014, 4(83): 44244–44252
[35]MENG H, JIN H, GAO J, et al. Pr6O11-coated high capacity layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 as a cathode material for lithium ion batteries[J]. J ElectroChem Soc, 2014, 161 (10): A1564–A1571.
[36]MAUGER A, JULIEN C. Surface modifications of electrode materials for lithium-ion batteries: status and trends[J]. Ionics, 2014, 20(6): 751–787.
[37]LIU Y, HUANG X, QIAO Q, et al. Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries[J]. Electrochim Acta, 2014, 147: 696–703.
[38]SUN Y K, LEE M J, YOON C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Adv Mater, 2012, 24(9): 1192–1196.
[39]LI Z, CHEMOVA N A, FENG J, et al. Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries[J]. J Electrochem Soc, 2012, 159(2): A116–A120
[40]LI G R, FENG X, DING Y, et al. AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries[J]. Electrochim Acta, 2012, 78: 308–315.
[41]WANG Q Y, LIU J, MURUGAN A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. J Mater Chem, 2009, 19(28): 4965–4972.
[42]ZHENG J M, ZHANG Z R, WU X B, et al. The effects of alf3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J]. J Electrochem Soc, 2008, 155(10): A775–A782.
[43]YANG Y, ZHENG J M, LI J, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery[J]. Solid State Ionics, 2008, 179(27/32): 1794–1799.
[44]KUMAGAI N, KIM J M, SYO T, et al. Structural modification of Li[Li0.27Co0.20Mn0.53]O2 by lithium extraction and its electrochemical property as the positive electrode for Li-ion batteries[J]. Electrochim Acta, 2008, 53: 5287–5293.
[45]ZHAO T, LI L, CHEN R, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy, 2015, 15: 164–176.
[46]CHEN J J, LI Z D, XIANG H F, et al. Bifunctional effects of carbon coating on high-capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries[J]. J Solid State Electrochem, 2015, 19(4): 1027–1035.
[47]吴晓彪, 董志鑫, 郑建明, 等. 锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2的碳包覆研究[J]. 厦门大学学报: 自然科学版 (in Chinese), 2008, 47(2): 224–227.
WU Xiaobo, DONG Zhixin, ZHENG Jianming, et al. J Xiamen Univ: Nat Sci, 2008, 47(2): 224–227.
[48]MA D, ZHANG P, LI Y, et al. Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-Ion batteries[J]. Sci Rep, 2015, 5: 11257.
[49]侯孟炎, 王珂, 董晓丽, 等. 石墨烯包覆富锂层状材料的制备及其电化学性能[J]. 电化学, 2015, 21(3): 195–200.
HOU Mengyan, WANG Ke, DONG Xiaoli, et al. J Electrochem (in Chinese), 2015, 21(3): 195–200.
[50]HE Z, WANG Z, GUO H, et al. A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries[J]. Mater Lett, 2013, 91: 261–264.
[51]SONG B, LAI M O, LIU Z, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries[J]. J Mater Chem A, 2013, 1(34): 9954–9965.
[52]KIM I T, KNIGHT J C, CELIO H, et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating[J]. J Mater Chem A, 2014, 2(23): 8696.
[53]ZHUO H, ZHNAG Y, WANG D, et al. Insight into lithium-rich layered cathode materials Li[Li0.1Ni0.45Mn0.45]O2 in situ coated with graphene-like carbon[J]. Electrochim Acta, 2014, 149: 42–48.
[54]XUE Q, LI J, XU G, et al. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries[J]. J Mater Chem A, 2014, 2(43): 18613–18623.
[55]AHN D, KOO Y M, KIM M G, et al. polyaniline nanocoating on the surface of layered Li[Li0.2Co0.1Mn0.7]O2 nanodisks and enhanced cyclability as a cathode electrode for rechargeable lithium-ion battery[J]. J Phys Chem C, 2010, 114(8): 3675–3680.
[56]SHI S J, TU J P, MAI Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries[J]. Electrochim Acta, 2012, 63: 112–117.
[57]LIU J, WANG Q, REEJA-JAYAN B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. Electrochem Commun., 2010, 12(6): 750–753.
[58]SHI S J, TU J P, TANG Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method[J]. Electrochim Acta, 2013, 88: 671–679.
[59]KOBAYASHI G, IRII Y, MATSUMOTO F, et al. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling[J]. J Power Sources, 2016, 303: 250–256.
[60]ZOU G, YANG X, WANG X, et al. Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3[J]. J Solid State Electrochem, 2014, 18(7): 1789–1797.
[61]MYUNG S T, IZUMI K, KOMABA S, et al. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for Li ion secondary batteries[J]. J Phys Chem C, 2007, 111: 4061–4067.
[62]HE W, QIAN J, CAO Y, et al. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. RSC Adv, 2012, 2(8): 3423–3429.
[63]WANG Z, LIU E, GUO L, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating[J]. Surf Coat Technol, 2013, 235: 570–576.
[64]LEE H J,PARK Y J. Synthesis of Li[Ni0.2Li0.2Mn0.6]O2 nano-particles and their surface modification using a polydopamine layer[J]. J Power Sources, 2013, 244: 222–233.
[65]LEE G H, CHOI I H, OH M Y, et al. Confined ZrO2 encapsulation over high capacity integrated 0.5Li[Ni0.5Mn1.5]O4·0.5[Li2MnO3·Li(Mn0.5Ni0.5)O2] cathode with enhanced electrochemical performance[J]. Electrochim Acta, 2016, 194: 454–460.
[66]UZUN D, Do?rusöz M, MAZMAN M, et al. Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries[J]. Solid State Ionics, 2013, 249/250: 171–176.
[67]GUO S, YU H, LIU P, et al. Surface coating of lithium– manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries[J]. J Mater Chem A, 2014, 2(12): 4422–4428.
[68]WU F, LI N, SU Y, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?[J]. J Mater Chem, 2012, 22(4): 1489–1497.
[69]LIU J, MANTHIRAM A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. J Mater Chem, 2010, 20(19): 3961–3967.
[70]LI B, LI C, CAI J, et al. In situ nano-coating on Li1.2Mn0.54Ni0.13Co0.13O2 with a layered@spinel@coating layer heterostructure for lithium-ion batteries[J]. J Mater Chem A, 2015, 3(42): 21290–21297.
[71]SHI S J, TU J P, ZHANG Y J, et al. Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries[J]. Electrochim Acta, 2013, 108: 441–448.
[72]CHEN C, GENG T, DU C, et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries[J]. J Power Sources, 2016, 331: 91–99.
[73]WANG C, ZHOU F, CHEN K, et al. Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. Electrochim Acta, 2015, 176: 1171–1181.
[74]GUAN X, DING B, LIU X, et al. Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel–manganese composite oxide[J]. J Solid State Electrochem, 2013, 17(7): 2087–2093.
[75]ZHU X, WANG Y, SHANG K, et al. Improved rate capability of the conducting functionalized FTO-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. J Mater Chem A, 2015, 3(33): 17113–17119.
[76]XU M, CHEN Z, ZHU H, et al. Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials[J]. J Mater Chem A, 2015, 3(26): 13933–13945.
[77]LIAN F, GAO M, MA L, et al. The effect of surface modification on high capacity Li1.375Ni0.25Mn0.75O2+γ cathode material for lithium-ion batteries[J]. J Alloys Compd, 2014, 608: 158–164.
[78]PANG S, WANG Y, CHEN T, et al. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide[J]. Ceram Int, 2016, 42(4): 5397–5402.
[79]ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials[J]. Chem Mater, 2014, 26(22): 6320–6327.
[80]CHONG S, CHEN Y, YAN W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries[J]. J Power Sources, 2016, 332: 230–239.
[81]LI L, CHANG Y L, XIA H, et al. NH4F surface modification of Li-rich layered cathode materials[J]. Solid State Ionics, 2014, 264: 36–44.
[82]LU C, WU H, ZHANG Y, et al. Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries[J]. J Power Sources, 2014, 267: 682–691.
[83]KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. J Alloys Compd, 2012, 517: 20–25.
[84]WANG Z, LUO S, REN J, et al. Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4[J]. Appl Surf Sci, 2016, 370: 437–444.
[85]BIAN X, FU Q, BIE X, et al. Improved Electrochemical Performance and Thermal Stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 Cathode Material by Li3PO4 Surface Coating[J]. Electrochim Acta, 2015, 174: 875–884.
[86]LEE Y, LEE J, LEE K Y, et al. Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries[J]. J Power Sources, 2016, 315: 284–293.
[87]LIU H, CHEN C, DU C, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries[J]. J Mater Chem A, 2015, 3(6): 2634–2641.
[88]WU Y, VADIVEL MURUGAN A,MANTHIRAM A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4[J]. J Electrochem Soc., 2008, 155(9): A635–A641.
[89]LEE S H, KOO B K, KIM J C, et al. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries[J]. J Power Sources, 2008, 184(1): 276–283.
[90]WANG Z, LIU E, HE C, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries[J]. J Power Sources, 2013, 236: 25–32.
[91]CHEN J J, LI Z D, XIANG H F, et al. Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries[J]. RSC Adv, 2015, 5(4): 3031–3038.
[92]CHO S W, KIM G O, RYU K S. Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries[J]. Solid State Ionics, 2012, 206: 84–90.
[93]LIU W, OH P, LIU X, et al. Countering voltage decay and capacity fading of lithium-rich cathode material at 60 ℃ by hybrid surface protection layers[J]. Adv. Energy Mater., 2015, 5(13): 1500274(1–11).
[94]LIU X, SU Q, ZHANG C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sus Chem Eng, 2016, 4(1): 255–263.
[95]LIU Y, WANG Q, WANG X, et al. Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with fast ionic conductor Li3VO4 coating[J]. Ionics, 2015, 21(10): 2725–2733.
[96]ZHAO E, LIU X, HU Z, et al. Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries[J]. J Power Sources, 2015, 294: 141–149.
[97]BIAN X, FU Q, QIU H, et al. High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 heterostructured cathode material coated with a lithium borate oxide glass layer[J]. Chem Mater, 2015, 27(16): 5745–5754.
[98]HUANG X, QIAO Q, SUN Y, et al. Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 coated with LiAlO2[J]. J Solid State ElectroChem, 2014, 19(3): 805–812.
[99]彭继明, 陈玉华, 李玉, 等. 表面活性剂对Li7La3Zr2O12包覆富锂锰基层状正极材料的影响[J]. 硅酸盐学报, 2016, 44(4): 493–397.
PENG Jiming, CHENG Yuhua, LI Yu, et al. J Chin Ceram Soc, 2016, 44(4): 493–497
[100]WU F, LI N, SU Y, et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries[J]. Nano Lett, 2014, 14(6): 3550–3555.
[101]BIAN X, FU Q, PANG Q, et al. Multi-functional surface engineering for Li-excess layered cathode material targeting excellent electrochemical and thermal safety properties[J]. ACS Appl Mater Interf, 2016, 8(5): 3308–3318.
[102]KONG J Z, WANG C L, QIAN X, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2[J]. Electrochim Acta, 2015, 174: 542–550.
|