首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
磁铅石结构NdMgAl11O19粉体的合成与晶格热膨胀
作者:吴红丹1 2 张锦化3 周志辉1 雷新荣2 
单位:1. 武汉科技大学冶金矿产资源高效利用与造块湖北省重点实验室 湖北 武汉 430081 2. 中国地质大学武汉纳米矿物材料及应用教育部工程研究中心 湖北 武汉 430074 3. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 湖北 武汉 430081 
关键词:NdMgAl11O19 晶格热膨胀 磁铅石结构 
分类号:O614.33
出版年,卷(期):页码:2017,45(7):0-0
DOI:10.14062/j.issn.0454-5648.2017.07.06
摘要:

 采用反向化学共沉淀法和高温煅烧法制备了磁铅石结构NdMgAl11O19粉体,并对粉体物相组成、化学成分、显微结构及晶格热膨胀行为进行了表征。结果表明:1 600 ℃煅烧得到的粉体为磁铅石结构NdMgAl11O19,晶体发育良好,晶粒呈规则六方片状,各晶面光滑平整。随着温度的升高,晶胞参数aT =5.573 68+4.586×10–5 T–5.906×10–8 T2 +4.310×10–11 T3,cT = 21.862 89+2.739 0×10–4 T–3.186 4×10–7 T2+2.306 3×10–10 T3。NdMgAl11O19的晶格热膨胀表现出各向异性,室温–1 300 ℃,a轴方向的平均热膨胀系数为7.3×10–6/℃,c轴方向的平均热膨胀系数为11.2×10–6/℃。Nd―O键的各向异性膨胀是晶格沿a、c轴方向表现出不同的热膨胀行为的主要原因。

 
The neodymium magnesium hexaaluminate (NdMgAl11O19, NMA) powders were synthesized via a reverse chemical coprecipitation and high-temperature calcination method. The crysstal structure, phase composition, micromorphology, and lattice thermal expansion were characterized. The magnetoplumbite structured NMA powder was obtained via calcination of the precursor at 1 600 ℃, and the morphology of the grain is regular with smooth hexagonal facets. The temperature dependence of the lattice parameters is established, i.e., aT =5.573 68+4.586×10–5 T–5.906×10–8 T2+4.310×10–11 T3, cT =21.862 89+2.7390×10–4 T–3.186 4×10–7 T2+2.306 3×10–10 T3. The thermal expansion coefficients of NMA from ambient temperature to 1 300 ℃ are 7.3×10–6 ℃–1 in a-axial direction and 11.2×10–6 ℃–1 in c-axial direction, respectively. The difference of thermal expansion coefficients in different axis directions is due to the expansion anisotropy of Nd―O bonds.
 
基金项目:
纳米矿物材料及应用教育部工程研究中心基金项目(NGM2016KF008)。
作者简介:
吴红丹(1982—),女,讲师。
参考文献:

 [1]PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280–284.

[2]CLARKE D R, PHILLPOT S R. Thermal barrier coating materials[J]. Mater Today, 2005, 8(6): 22–29.
[3]VA EN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface Coat Technol, 2010, 205(4): 938–942.
[4]CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Euro Ceram Soc, 2004, 24(1): 1–10.
[5]CAO X, VASSEN R, FISCHER W, et al. Lanthanum– cerium oxide as a thermal barrier- coating material for high-temperature applications[J]. Adv Mater, 2003, 34(17): 11–24.
[6]VASSEN R, CAO X, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. J Am Ceram Soc, 2000, 83(8): 2023–2028.
[7]STVER D, PRACHT G, LEHMANN H, et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings[J]. J Thermal Spray Technol, 2004, 13(1): 76–83.
[8]齐峰, 樊自拴, 孙冬柏, 等. 新型热障涂层材料镁基六铝酸镧喷涂粉末的制备 [J]. 材料工程, 2006, (7): 14–18.
QI Feng, FAN Zhishuang, SUN Dongpo, et al. Mater Eng (in Chinese), 2006, (7): 14–18.
[9]LIU B, WANG J Y, LI F Z, et al. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T =Ge, Ti, Sn, Zr, Hf) pyrochlore[J]. Acta Mater, 2010, 58(13): 4369–4377.
[10]XIE X Y, GUO H B, GONG S K. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings[J]. J Thermal Spray Technol, 2010, 19(6): 1179–1185.
[11]GUPTA M, CURRY N, NYL N P, et al. Design of next generation thermal barrier coatings-experiments and modelling[J]. Surface Coat Technol, 2013, 220(15): 20–26.
[12]HUANG L L, MENG H M, LIANG L K, et al. Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings[J]. Int J Mine Metal Mater, 2015, 22(10): 1050–1059.
[13]LU H, WANG C A, ZHANG C, et al. Thermo- physical properties of rare-earth hexaaluminates LnMgAl11O19 (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings[J]. J Euro Ceram Soc, 2015, 35(4): 1297–1306.
[14]CUI J J, OUYANG J H, LIU Z G. Hot corrosion behavior of LaMgAl11O19 ceramic coated with molten CMAS deposits at temperature of 1250°C in air[J]. J Alloy Compd, 2016, 685: 316–321.
[15]WU H, LEI X, ZHANG J, et al. Lattice thermal expansion of the solid solutions (La1−xSmx)2Ce2O7[J]. Mater Res Bull, 2014, 57: 320–324.
[16]ZHANG J, KE C, WU H, et al. Lattice thermal expansion and solubility limits of neodymium-doped ceria[J]. J Solid State Chem, 2016, 243: 57–61.
[17]MACHIDA M, EGUCHI K, ARAI H. Analytical electron microscope analysis of the formation of BaO·6Al2O3[J]. J Am Ceram Soc, 1988, 71(12): 1142–1147.
[18]EVANS J S O, MARY T A, SLEIGHT A W. Negative thermal expansion materials[J]. Physica B, 1997, 241-243: 311–316.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com