首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
载铝活性炭纤维电极的制备与其吸附除磷性能
作者:方俊华 张伟 张凯 蒋荣廷 王中源 
单位:重庆大学三峡库区生态环境教育部重点实验室 重庆大学城市建设与环境工程学院 重庆 400045 
关键词:活性碳纤维 活性氧化铝 电吸附  
分类号:X703
出版年,卷(期):页码:2017,45(7):0-0
DOI:10.14062/j.issn.0454-5648.2017.07.00
摘要:

 将活性炭纤维经负载活性氧化铝改性后,制备成一种可吸附除磷的电吸附材料。研究了制备材料的优化吸附条件及其吸附行为特征,探讨了电极的吸附机理。结果表明:活性氧化铝被成功负载到了电极上,电极的优化吸附条件为外加电压1 V,溶液初始pH=3,铝负载量0.3 g。加1 V电压及开路条件下,电极的吸附行为均更符合液相BET吸附模型,表明电极对磷的吸附为多层吸附过程;同时外加电压后可以显著提高初始磷浓度小于200 mg/L时的吸附量,而当初始浓度大于     450 mg/L后这种提升的效果消失。电极的吸附动力学特征表现为伪一级动力学,颗粒内扩散为整个吸附的控制步骤。电极再生循环13次后仍具有初始吸附能力的40%,表明此种电极具有良好的再生性。

 

 The activated carbon fibers loaded with activated alumina were prepared as a special electrode material adsorbing phosphorus. The optimized adsorption condition, adsorption kinetics and mechanism of the electrode material were investigated. The results show that the activated alumina can be loaded onto the electrode, and the optimum adsorption condition of electrode is the voltage of 1 V, the initial pH value of solution of 3, and the loading amount of activated alumina of 0.3 g. The adsorption behavior of the electrode under the condition of 1 V voltage and open circuit follows the BET adsorption model, indicating that the adsorption of phosphorus on the electrode is a multilayer adsorption process. The adsorption capacity increases when the initial phosphorus concentration is less than 200 mg/L and the initial concentration is greater than 450 mg/L, and the effect of increasing adsorption capacity disappears. The adsorption kinetics of the electrode follows the pseudo-first-order kinetic model, and the interior particle diffusion is a key step of adsorption process. The electrode has a good regeneration capacity because the electrode still has 40 percents of the initial adsorption capacity after thirteen-time regeneration.

 
基金项目:
国家“水体污染控制与治理”科技重大专项(2012ZX07307-001)项目。
作者简介:
方俊华(1965—),男,博士,副教授。
参考文献:

[1] ASNAOUI H, LAAZIRI A, KHALIS M. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (ulva lactuca) biomass[J]. Water Sci Technol. 2015, 72(9): 1505–1515.

[2] GONZÁLEZ M A, PAVLOVIC I, BARRIGA C. Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors[J]. Chem Eng J. 2015, 269: 221–228.
[3] FOO K Y, HAMEED B H. A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects[J]. J Hazard Mater. 2009, 170(2–3): 552–559.
[4] LI H, LU T, PAN L, et al. Electrosorption behavior of graphene in NaCl solutions[J]. J Mater Chem. 2009, 19(37): 6773–6779.
[5] YANG Kunlin, YING Tungyu, YIACOUMI Sotira, et al. Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel:  An Electrical Double-Layer Model[J]. Langmuir. 2001, 17(6): 1961–1969.
[6] YING T Y, YANG K L, YIACOUMI S, et al. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J]. J Colloid Interface Sci. 2002, 250(1): 18–27.
[7] HUANG C C, SU Y J. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths[J]. J Hazard Mater. 2010, 175(1-3): 477–483.
[8] YAN L G, XU Y Y, YU H Q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. J Hazard Mater. 2010, 179(179): 244–250.
[9] ZENG L, LI X, LIU J. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings[J]. Water Res. 2004, 38(5): 1318–1326.
[10] YANG K, YAN L G, YANG Y M, et al. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms[J]. Sep Purif Technol. 2014, 124(124): 36–42.
[11] 孟文娜, 谢杰, 吴德意, 等. 活性氧化铝对水中磷的去除与回收研究[]. 环境科学, 2013, 34(1): 231–236.
MENG Wenna, XIE Jie, WU Deyi, et al. Environ Sci (in Chinese). 2013, 34(1): 231–236.
[12] SHI Z L, LIU F M, YAO S H. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide[J]. Carbon. 2012, 26(26): 299–306.
[13] LIU J, ZHOU Q, CHEN J, et al. Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber[J]. Chem Eng J. 2013, s 215–216(2): 859–867.
[14] ZHANG Yu, YANG Min, DOU Xiaomin, et al. Arsenate adsorption on an Fe−Ce bimetal oxide adsorbent: Role of surface properties[J]. Environ Sci Technol. 2005, 39: 7246–7253.
[15] LIU Han, DENG Shubo, LI Zhijian, et al. Preparation of Al–Ce hybrid adsorbent and its application for defluoridation of drinking water[J]. Hazard Mater. 2010, 179: 424–430.
[16] Jianbo Lǚ, Huijuan Liu, Ruiping Liu, et al. Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent[J]. Powder Technol. 2013, 233: 146–154.
[17] Lamia Boukemara, Chahrazed Boukhalfa. Phosphate Removal from Aqueous Solution by Hydrous Iron Oxide Freshly Prepared Effects of pH, Iron Concentration and Competitive Ions[J]. Procedia Eng. 2012, 33: 163-167.
[18] Alfarra A, Frackowiak E, Béguin F O. Mechanism of lithium electrosorption by activated carbons[J]. Electrochim Acta. 2002, 47(10): 1545–1553.
[19] 汤鸿霄. 环境水质学的进展一颗粒物与表面络合(下[J]. 环境科学进展, 1993, 1(2): 1–12.
TANG Hongxiao. Prog in Environ Sci (in chinese). 1993, 1(2): 1–12.
[20] ZHOU Q, WANG X, LIU J, et al. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by sol–gel method[J]. Chem Eng J, 2012, 200–202: 619–626.
[21] ZHANG L, WAN L, CHANG N, et al. Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide[J]. J Hazard Mater, 2011, 190(1/3): 848–855.
[22] OU E, ZHOU J, MAO S, et al. Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2 [J]. Colloids Surf A, 2007, 308(1/3): 47–53.
[23] PARKER G R. Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents[J]. Adsorption, 1995, 1(2): 113–132.
[24] MAURYA N S, MITTAL A K. ?Applicability of Equilibrium Isotherm Models for the Biosorptive Uptakes in Comparison to Activated Carbon-Based Adsorption [J]. J Environ Eng, 2006, 132(12): 1589–1599.
[25] HALL C, David S, Mark A, et al. Copper removal from aqueous systems:biosorption by pseudomonas syringae[J]. Sep Sci Technol. 2001, 2(36): 223–240.
[26] EBADI A, SOLTAN MOHAMMADZADEH J S, KHUDIEV A. What is the correct form of BET isotherm for modeling liquid phase adsorption[J]. Adsorption, 2009, 15(1): 65–73.
[27] GRITTI F, GUIOCHON G. New thermodynamically consistent competitive adsorption isotherm in RPLC[J]. J Colloid Interface Sci, 2003, 264(1): 43–59.
[28] GUIDELLI R, SCHMICKLER W. Recent developments in models for the interface between a metal and an aqueous solution[J]. Electrochim Acta, 2000, 45: 2317–2338.
[29] 汤鸿霄. 环境水质学的进展一颗粒物与表面络合[J]. 环境科学进展, 1993, 1(1): 25–41.
TANG Hongxiao. Prog in Environ Sci (in Chinese). 1993, 1(1): 25–41.
[30] TOKUNAGAA S, HARONA M J, WASAYA S A, et al. Removal of fluoride ions from aqueous solutions by multivalent metal compounds[J]. Int J Environ Stud, 1995, 48(1): 17-28
[31] XIE J, LIN Y, LI C, et al. Removal and recovery of phosphate fromwater by activated aluminum oxide and lanthanum oxide [J]. Powder Technol, 2015, 269(4): 351–357.
[32] DENG L, SHI Z. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution[J]. J Alloys Compd, 2015, 637: 188–196.
[33] REN J, LI N, LI L, et al. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water [J]. Bioresour Technol. 2015, 178: 119–125.
[34] HAWKE D, CARPENTER P D, HUNTER K A. Competitive adsorption of phosphate on goethite in marine electrolytes[J]. Environ Sci Technol, 1989, 23(2): 187–191.
[35] YAO W, MILLERO F J. Adsorption of Phosphate on Manganese Dioxide in Seawater[J]. Environ Sci Technol, 1996, 30(2): 536–541.
[36] GUAN Q, HU X, WU D, et al. Phosphate removal in marine electrolytes by zeolite synthesized from coal fly ash [J]. Fuel, 2009, 88(9): 1643–1649.
[37] XIE J, WANG Z, WU D, et al. Synthesis of zeolite/aluminum oxide hydrate from coal fly ash: A new type of adsorbent for simultaneous removal of cationic and anionic pollutants [J]. Ind Eng Chem Res, 2013, 52(42): 14890–14897.
[38] LAI L, XIE Q, CHI L, et al. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide[J]. J Colloid Interface Sci, 2016, 465: 76–82.
[39] YU Y, PAUL Chen J. Key factors for optimum performance in phosphate removal from contaminated water by a Fe–Mg–La tri-metal composite sorbent [J]. J Colloid Interface Sci, 2015, 445: 303–311.
[40] JANSSEN P M J, MEINEMA K,Van der ROST H F. 生物除磷设计与运行手册[M]. 祝贵兵 彭永臻译. 北京: 中国建筑工业出版社, 2005.
P.M.J.Janssen, K.Meinema, H.F.Van der Rost. Biological phosphorus removal manual for design and operation[M]. ZHU Guibing, PENG Yongzhen trans. Beijing: China Architecture & Building Press, 2005.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com