首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Ag@AgBr/C3N4–凹凸棒石复合材料的制备及光催化脱硫性能
作者:左士祥1 3 陈瑶1 吴孟德2 刘文杰1 姚超1 李霞章1 付永胜3 
单位:1. 常州大学 江苏省先进催化与绿色制造协同创新中心 江苏 常州 213164 2. 南京工业大学 化学分子与工程学院 南京 211816 3. 南京理工大学 软化学与功能材料教育部重点实验室 南京 210094 
关键词:凹凸棒石 氮化碳 银@溴化银 光催化脱硫 协同效应 
分类号:TB332
出版年,卷(期):页码:2017,45(7):0-0
DOI:10.14062/j.issn.0454-5648.2017.07.00
摘要:

 以凹凸棒石为骨架,通过两步法制备了Ag@AgBr/氮化碳–凹凸棒石复合脱硫光催化剂 (Ag@AgBr/FCN–ATP)。研究表明:ATP表面形成了均匀的FCN膜,Ag@AgBr粒子均匀地负载在ATP–FCN表面。与Ag@AgBr相比,Ag@AgBr/FCN–ATP具有大的比表面积和高的可见光响应及分离光生空穴–电子能力。以二苯并噻吩(DBT)为目标硫化物,考察了在可见光下催化剂对DBT的氧化脱除能力。结果表明,Ag与DBT中的S形成σ配位键吸附作用,Ag@AgBr和FCN–ATP之间的异质结构和协同效应能有效促进光生电子的传输且抑制空穴–电子复合。当光照时间为180 min时,Ag@AgBr/FCN–ATP的脱硫率可达85.2%。

 

 Ag@AgBr/C3N4-attapulgite (Ag@AgBr/FCN-ATP) composite photocatalyst for desulfurization was fabricated by a two-step method using ATP as a skeleton. The results show that Ag@AgBr particles are uniformly loaded on the surface of ATP-FCN and FCN membrane is coated on the surface of ATP. Compared to Ag@AgBr, Ag@AgBr/FCN-ATP composite has greater specific surface area, higher visible light response and enhanced hole-electron separation ability. The photocatalytic desulfurization of dibenzothiophene (DBT) under visible light indicates that Ag@AgBr/FCN-ATP can adsorb DBT via σ coordinate interaction between Ag and S atoms, and the heterostructure and the synergistic effect between Ag@AgBr and FCN-ATP can transfer the electron, leading to suppress the electron-hole recombination. After 180 min irradiation, the desulfurization rate of Ag@AgBr/FCN-ATP reaches 85.2%.

 
基金项目:
江苏省科技支撑计划(BE2014100);江苏省先进催化与绿色制造协同创新中心人才支持项目(ACGM2016-06-11);中央高校基本科研业务费专项资金(30916014103)。
作者简介:
左士祥(1984—),男,博士,助理研究员。
参考文献:

 [1] LIU B X, CHAI Y M, LI Y P, et al. Effect of sulfidation atmosphere on the performance of the CoMo/gamma-Al2O3 catalysts in hydrodesulfurization of FCC gasoline [J]. Appl Catal A, 2014, 471: 70–79. 

[2] SAMADI-MAYBODI A, TEYMOURI M, VAHID A, et al. In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent-solute interaction and its activity toward adsorptive desulfurization of gas oil [J]. J Hazard Mater, 2011, 192(3): 1667–1674. 
[3] DINAMARCA M A, ROJAS A, BAEZA P, et al. Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems [J]. Fuel, 2014, 116(1): 237–241. 
[4] SHANG H, ZHANG H C, DU W, et al. Development of microwave assisted oxidative desulfurization of petroleum oils: A review [J]. J Ind Eng Chem, 2013, 19(5): 1426–1432. 
[5] ZARRABI M, ENTEZARI M H, GOHARSHADIC E K. Photocatalytic oxidative desulfurization of dibenzothiophene by C/TiO2@MCM-41 nanoparticles under visible light and mild conditions [J]. RSC Adv, 2015, 5(44): 34652–34662. 
[6] WANG L, WANG Z, MOMINOU N, et al. Ultra-deep desulfurization of gasoline through aqueous phase in-situ hydrogenation and photocatalytic oxidation [J]. Appl Catal B, 2016, 193: 180–188. 
[7] ZARRABI M, ENTEZARI, M H. Modification of C/TiO2@MCM-41 with nickel nanoparticles for photocatalytic desulfurizationenhancement of a diesel fuel model under visible light [J]. J Colloid Interf Sci, 2015, 457: 353–359. 
[8] WANG X, LI F, LIU J, et al. Preparation of TiO2 in ionic liquid via microwave radiation and in situ photocatalytic oxidative desulfurization of diesel oil [J]. Energy Fuels 2012, 26(11): 6777−6782. 
[9] MIAO G, HUANG D, REN X, et al. Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions [J]. Appl Catal B, 2016, 192: 72–79. 
[10] 王丹军, 岳林林, 郭 莉, 等. 多孔结构Bi2WO6 光催化剂的制备及其模拟燃油催化氧化脱硫活性[J]. 无机材料学报, 2013, 28(10): 1079–1086.
WANG Danjun, YUE Linlin, GUO Li, et al. J Inorg Mater (in Chinese), 2013, 28(10): 1079–1086. 
[11] LI S W, LI Y Y, YANG F, et al. Photocatalytic oxidation desulfurization of model diesel over phthalocyanine/La0.8Ce0.2NiO3 [J]. J Colloid Interf Sci, 2015, 460: 8–17. 
[12] ZHAO N, LI S, ZHANG X, et al. Photocatalytic performances of Ag/ALa4Ti4O15 (A=Ca, Sr and Ba) on H2O2 oxidative desulfurization [J]. Colloids Surf A, 2015, 481:125–132. 
[13] WANG C, ZHU W, XU Y, et al. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization [J]. Ceram Int, 2014, 40(8): 11627–11635.  
[14] ZHANG J, ZHANG M, LIN L, et al. Sol processing of conjugated carbon nitride powders for thin-film fabrication [J]. Angew Chem Int Edit, 2015, 54(21): 6297–6301. 
[15] ZHU C, ZHENG J, FANG L, et al. Advanced visible-light driven photocatalyst with enhanced charge separation fabricated by facile deposition of Ag3PO4 nanoparticles on graphene-like h-BN nanosheets [J]. J Mol Catal A, 2016, 424: 135–144.  
[16] XU Y, XU H, YAN J, et al. A plasmonic photocatalyst of Ag/AgBr nanoparticles coupled with g-C3N4 with enhanced visible-light photocatalytic ability [J]. Colloids Surf A, 2013, 436(35):474–483.  
[17] ZUO S, YAO C, LIU W, et al. Preparation of Ureido-palygorskite and its effect on the properties of urea-formaldehyde resin [J]. Appl Clay Sci, 2013, 80–81(4): 133–139.  
[18] XU Y S, ZHANG D. Ag/AgBr-grafted graphite-like carbon nitride with enhanced plasmonic photocatalytic activity under visible light [J]. ChemCatChem, 2013, 5(8): 2343–2351. 
[19] HOU Y, LI X, ZHAO Q, et al. TiO2 nanotube/Ag-AgBr three-component nanojunction for efficient photoconversion [J]. J Mater Chem 2011, 21(44): 18067–18076. 
[20] ZHANG Y, THOMAS A, ANTONIETTI M, et al. Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments [J]. J Am Chem Soc, 2009, 131(1): 50–51.  
[21] YU J C, YU J G, HO W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem Mater, 2002, 14(9): 3808–3816. 
[22] 艾硕. 油品金属银吸附和过氧化氢氧化脱硫过程的研究[D]. 天津: 天津大学, 2012. 
AI Suo. Study on adsorptive desulfurization employing metallic silver and oxidative desulfurization using peroxide for fuel oils (dissertation, in Chinese). Tianjin: Tianjin University, 2012 
[23] XU H, YAN J, XU Y G, et al. Novelvisible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity [J]. Appl Catal B, 2013, 129(2): 182–193.
[24] CAO J, ZHAO Y, LIN H, et al. Ag/AgBr/g-C3N4: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light [J]. Mater Res Bull, 2013, 48(10): 3873–3880.  
[25] WANG H, XIAO B, CHENG X, et al. NiMo catalysts supported on graphene-modified mesoporous TiO2 toward highly efficient hydrodesulfurization of dibenzothiophene [J]. Appl Catal A, 2015, 502: 157–165. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com