首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
不同预制体结构C/C复合材料的CVI致密化行为
作者:李艳1 崔红1 2 赵新来2 李世山2 嵇阿琳2 
单位:1. 西北工业大学 材料学院 陕西 西安 710072 2. 西安航天复合材料研究所 陕西 西安 710025 
关键词:针刺预制体 化学气相渗透 致密化效率 密度分布 
分类号:TB332
出版年,卷(期):页码:2017,45(7):0-0
DOI:10.14062/j.issn.0454-5648.2017.07.00
摘要:

 采用化学气相渗透工艺(CVI)分别对整体毡和针刺毡厚壁预制体进行了500 h的致密化,研究了2种预制体的致密化效率、微观结构及密度分布情况。结果表明,预制体结构对C/C复合材料的致密化行为影响较大。致密化前期,整体毡预制体表现出较高的致密化效率,后期效率下降较快,热解炭包裹在纤维之间,材料内部密度分布不均,呈现两边高中间低的现象。针刺预制体在CVI前期致密化效率较低,热解炭主要包裹在纤维束外,致密化后期致密化效率下降较慢,致密后材料内部密度分布均匀。与整体毡预制体相比,针刺预制体的孔隙平直,分布均匀,更有利于碳源气体的深入渗透以获得均匀的密度分布。

 

 Two kinds of thick-wall C/C composites were prepared via chemical vapor infiltration (CVI) using integral felt and needled felt as reinforced preforms. The densification efficiency, microstructure and density distribution were investigated. The results show that the structure of preform has a great influence on the densification behavior. For the integral felt preform, its densification efficiency is great during the initial infiltration of CVI, but it decreases rapidly afterwards. The thicker pyrocarbon layers are wrapped around fibers, showing a radially heterogeneous density distribution. For needled preform, its densification efficiency is lower than that of the integral felt preform during the initial infiltration of CVI, but decreases slowly at the subsequent stage of CVI. Pyrocarbon mainly exists outside the bundle of fibers, exhibiting the uniform radial density distribution. Compared to the integral felt preform, the pores of needled preform are flat, straight and uniform distribution, which are more suitable for the penetration of gas into the preform and favors to obtain the uniform density distribution.

 
基金项目:
国防基础科研项目(C0320110006)。
作者简介:
李 艳(1980—),女,博士研究生,高级工程师。
参考文献:

 [1] LACOTE M, LACOMBE A, JOYEZ P. Carbon/carbon extendable nozzles[J]. Acta Astron 2002, 50(6): 357–367.

[2] LI H J. Carbon/carbon composites[J]. New Carbon Mater, 2001, 16(2): 79–80.
[3] LUO R Y, YANG Z, LI L F. Effect of additives on mechanical properties of oxidation-resistant carbon/carbon composite fabricated by rapid CVD method[J]. Carbon, 2000, 38: 2109–2115.
[4] 苏君明, 邵海成, 肖志超, 等. 低烧蚀率针刺炭纤维炭/炭复合材料喉衬的制备与性能研究[J]. 炭素技术, 2013, 32(6): A1–A5.
SU Junming, SHAO Haicheng, XIAO Zhichao, et al. Carbon Tech(in Chinese), 2013, 32(6): A1–A5.
[5] ZOU Z Q, TANG Z H, XIONG J. The manufacturing of C/C composite brake disk by means of thermal gradient densification technique[J]. New Carbon Mater, 2000, 15(2): 22–27.
[6] DELHAES P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon, 2002, 40: 641–657.
[7] WANG J P, QIAN J M, QIAO G J, et al. A rapid fabrication of composites by a thermal gradient chemical vapor infiltration method with vaporized kerosene as a precursor[J]. Mater Chem Phys, 2007, 101: 7–11.
[8] ZHANG W G, HU Z J, HÜTTINGRT K .J. Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstruction[J]. Carbon, 2002, 40: 2529–2545.
[9] HU Z J, ZHANG W G, HÜTTINGRT K J, et al. Influence of pressure, temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane[J]. Carbon, 2003, 41:749–758.
[10] BAXTER R I, RAWLINGS R D, IWASHITA N, et al. Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation[J]. Carbon, 2000, 38: 441–449.
[11] CHEN J, WANG Y G, WANG Y, et al. Thermal expansion properties of 3D needled C/SiC-TaC composites[J]. Acta Mater Compos Sin, 2011, 28(2): 149–154.
[12] WU X J, CHENG W, QIAO S R, et al. Fast densification of thick-walled carbon/carbon composite tubes using electrically coupled chemical vapor infiltration[J]. Carbon, 2013, 57: 371–379.
[13] SHARMA R, DESHPANDE V V, BHAGAT A R, et al. X-ray tomographical observations of cracks and voids in 3D carbon/carbon composites[J]. Carbon, 2013, 60(3): 335–345.
[14] 孙国岭, 李贺军, 齐乐华, 等. C/C复合材料热梯度CVI工艺致密化过程的非稳态温度场分析[J]. 金属学报, 2006, 42(10): 1046–1050
SUN Guoling, LI Hejun, QI Lehua, et al. et al Metal Sin(in Chinese), 2006, 42(10): 1046–1050.
[15] 李思维, 张立同, 刘永胜,等. 热处理对C / SiC复合材料纤维束中微裂纹扩展行为的影响[J]. 热加工工艺,2011, 40(10): 109–112.
LI Siwei, ZHANG Litong, LIU Yongsheng, et al. Hot Working Technol(in Chinese), 2011, 40(10): 109–112.
[16] 闫桂沈, 李贺军, 张守阳等.热梯度化学气相沉积动力学过程的探讨[J]. 复合材料学报, 2003, 20(2): 64–70
YAN Guishen, LI Hejun, ZHANG Shouyang, et al. Acta Mater Compos Sin(in Chinese), 2003, 20(2): 64–70.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com